다음은 Python의 numpy 라이브러리에서 행렬을 목록 및 기타 함수로 변환하는 방법을 공유할 것입니다. 이는 좋은 참고 가치가 있으며 모든 사람에게 도움이 되기를 바랍니다. 함께 구경해보세요
이 글은 주로 Python Numpy 라이브러리의 일부 기능을 소개하고, 쉽게 검색할 수 있도록 백업해두었습니다.
(1) 행렬을 목록으로 변환하는 함수: numpy.matrix.tolist()
목록 목록 반환
Examples
>>>
>>> x = np.matrix(np.arange(12).reshape((3,4))); x matrix([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> x.tolist() [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]
(2) 배열을 리스트로 변환하는 함수: numpy.ndarray.tolist()
참고: (배열은 재구성 가능)
배열은 a=np.array(a.tolist( ))로 다시 생성될 수 있습니다.
예
>
> ;>>
>>> a = np.array([1, 2]) >>> a.tolist() [1, 2] >>> a = np.array([[1, 2], [3, 4]]) >>> list(a) [array([1, 2]), array([3, 4])] >>> a.tolist() [[1, 2], [3, 4]]
(4) numpy.std()는 행렬이나 배열의 표준편차를 계산합니다.
예
>>>
>>> a = np.array([[1, 2], [3, 4]]) #对所有元素求均值 >>> np.mean(a) 2.5 >>> np.mean(a, axis=0) #对每一列求均值 array([ 2., 3.]) >>> np.mean(a, axis=1) #对每一行求均值 array([ 1.5, 3.5])
(5) numpy.newaxis는 배열에 차원을 추가합니다:
예:
>>> a = np.array([[1, 2], [3, 4]]) #对所有元素求标准差 >>> np.std(a) 1.1180339887498949 >>> np.std(a, axis=0) #对每一列求标准差 array([ 1., 1.]) >>> np.std(a, axis=1) #对每一行求标准差 array([ 0.5, 0.5])
>>> a=np.array([[1,2,3],[4,5,6],[7,8,9]]) #先输入3行2列的数组a
>>> b=a[:,:2]
>>> b.shape #当数组的行与列都大于1时,不需增加维度
(3, 2)
>>> c=a[:,2]
>>> c.shape #可以看到,当数组只有一列时,缺少列的维度
(3,)
>>> c
array([3, 6, 9])
(6) numpy.random.shuffle(index): 데이터 세트(배열)의 순서를 방해합니다:
예:>>> d=a[:,2,np.newaxis] #np.newaxis实现增加列的维度 >>> d array([[3], [6], [9]]) >>> d.shape #d的维度成了3行1列(3,1) (3, 1) >>> e=a[:,2,None] #None与np.newaxis实现相同的功能 >>> e array([[3], [6], [9]]) >>> e.shape (3, 1)
(7) 2차원 배열의 행 또는 열의 최소값:
>>> index = [i for i in range(10)]
>>> index
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> np.random.shuffle(index)
>>> index
[7, 9, 3, 0, 4, 1, 5, 2, 8, 6]
(8) 배열에 열 추가: np.hstack()
>>> import numpy as np
>>> a = np.arange(15).reshape(5,3) #构造一个5行3列的二维数组
>>> a
array([[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 9, 10, 11],
[12, 13, 14]])
>>> b = a[:,0].min() ##取第0列的最小值,其他列同理
>>> b
0
>>> c = a[0,:].max() ##取第0行的最大值,其他行同理
>>> c
2
다음을 수행할 수 있습니다. n은 2차원이고 l은 1차원입니다. np가 직접 호출되면 hstack()이 오류를 발생시킵니다. 차원이 다릅니다.
n = np.array(np.random.randn(4,2)) n Out[153]: array([[ 0.17234 , -0.01480043], [-0.33356669, -1.33565616], [-1.11680009, 0.64230761], [-0.51233174, -0.10359941]]) l = np.array([1,2,3,4]) l Out[155]: array([1, 2, 3, 4]) l.shape Out[156]: (4,)
해결책은 l을 2차원으로 변경하는 것입니다. (5)의 방법을 사용할 수 있습니다.
n = np.hstack((n,l)) ValueError: all the input arrays must have same number of dimensions
열별로 빈 목록:
n = np.hstack((n,l[:,np.newaxis])) ##注意:在使用np.hstack()时必须用()把变量括起来,因为它只接受一个变量 n Out[161]: array([[ 0.17234 , -0.01480043, 1. ], [-0.33356669, -1.33565616, 2. ], [-1.11680009, 0.64230761, 3. ], [-0.51233174, -0.10359941, 4. ]])
지속적으로 업데이트 중...관련 권장 사항:
Python의 numpy 라이브러리
Python NumPy 라이브러리 설치 및 사용 참고 사항
위 내용은 Python의 numpy library_python에서 행렬을 목록 및 기타 함수로 변환하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Python 또는 C를 선택하는 것은 프로젝트 요구 사항에 따라 다릅니다. 1) 빠른 개발, 데이터 처리 및 프로토 타입 설계가 필요한 경우 Python을 선택하십시오. 2) 고성능, 낮은 대기 시간 및 근접 하드웨어 제어가 필요한 경우 C를 선택하십시오.

매일 2 시간의 파이썬 학습을 투자하면 프로그래밍 기술을 효과적으로 향상시킬 수 있습니다. 1. 새로운 지식 배우기 : 문서를 읽거나 자습서를 시청하십시오. 2. 연습 : 코드를 작성하고 완전한 연습을합니다. 3. 검토 : 배운 내용을 통합하십시오. 4. 프로젝트 실무 : 실제 프로젝트에서 배운 것을 적용하십시오. 이러한 구조화 된 학습 계획은 파이썬을 체계적으로 마스터하고 경력 목표를 달성하는 데 도움이 될 수 있습니다.

2 시간 이내에 Python을 효율적으로 학습하는 방법 : 1. 기본 지식을 검토하고 Python 설치 및 기본 구문에 익숙한 지 확인하십시오. 2. 변수, 목록, 기능 등과 같은 파이썬의 핵심 개념을 이해합니다. 3. 예제를 사용하여 마스터 기본 및 고급 사용; 4. 일반적인 오류 및 디버깅 기술을 배우십시오. 5. 목록 이해력 사용 및 PEP8 스타일 안내서와 같은 성능 최적화 및 모범 사례를 적용합니다.

Python은 초보자 및 데이터 과학에 적합하며 C는 시스템 프로그래밍 및 게임 개발에 적합합니다. 1. 파이썬은 간단하고 사용하기 쉽고 데이터 과학 및 웹 개발에 적합합니다. 2.C는 게임 개발 및 시스템 프로그래밍에 적합한 고성능 및 제어를 제공합니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

Python은 데이터 과학 및 빠른 개발에 더 적합한 반면 C는 고성능 및 시스템 프로그래밍에 더 적합합니다. 1. Python Syntax는 간결하고 학습하기 쉽고 데이터 처리 및 과학 컴퓨팅에 적합합니다. 2.C는 복잡한 구문을 가지고 있지만 성능이 뛰어나고 게임 개발 및 시스템 프로그래밍에 종종 사용됩니다.

파이썬을 배우기 위해 하루에 2 시간을 투자하는 것이 가능합니다. 1. 새로운 지식 배우기 : 목록 및 사전과 같은 1 시간 안에 새로운 개념을 배우십시오. 2. 연습 및 연습 : 1 시간을 사용하여 소규모 프로그램 작성과 같은 프로그래밍 연습을 수행하십시오. 합리적인 계획과 인내를 통해 짧은 시간에 Python의 핵심 개념을 마스터 할 수 있습니다.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는
