이 글은 Vue2.0의 전역 스타일(less/sass 및 css)을 주로 소개합니다. 관심 있는 친구들이 참고할 수 있기를 바랍니다.
Vue의 전역 스타일을 설정하려면 여러 단계가 필요합니다(sass인 경우 sass로 덜 변경)
1단계: 다음 코드를 src 디렉터리의 main.js에 추가합니다. 이는 항목 파일입니다
require('!style-loader!css-loader!less-loader!./common/less/index.less')
Vue 버전 1.0에서는 이렇게 작성할 수 있지만 버전 2.0에서는 작동하지 않습니다. 구문 분석 오류를 알리는 오류가 보고됩니다
require('./common/less/index.less')
두 번째 단계: webpack.base.conf. 모듈을 구성하려면 규칙 아래에 두 개의 모듈만 추가하면 됩니다.
module.exports = { module: { rules: [ { test: /\.less$/, loader: 'style-loader!css-loader!less-loader' }, { test:/\.css$/, loader:'css-loader!style-loader', } ] } }
3단계: 오류가 보고되면 위의 종속성을 설치하지 않았을 수 있습니다. 추가해야 합니다. 루트 디렉터리의 package.json 파일에 종속성
4단계: 명령 창에서 명령을 실행하여 종속성
npm install
linux(ubuntu, deepin)를 설치합니다. Mac OS 시스템에서는 권한이 부족하므로 권한을 받아야 한다는 메시지가 표시됩니다. 그런 다음 권한만 얻으면 됩니다.
sudu npm install공개 파일이 많으면 모두 하나의 파일에 넣고 공개 파일 링크를 사용하여 여러 A 스타일 파일 글로벌 스타일을 구현할 수 있습니다.
관련 추천:
Css 로컬 및 글로벌 스타일 코드의 JavaScript 수정에 대한 자세한 설명
[Bootstrap] 글로벌 스타일 (4) - 한여름, 광년
위 내용은 Vue2.0 전역 스타일 인스턴스 공유 설정의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Python中的支持向量机(SupportVectorMachine,SVM)是一个强大的有监督学习算法,可以用来解决分类和回归问题。SVM在处理高维度数据和非线性问题的时候表现出色,被广泛地应用于数据挖掘、图像分类、文本分类、生物信息学等领域。在本文中,我们将介绍在Python中使用SVM进行分类的实例。我们将使用scikit-learn库中的SVM模

随着新一代前端框架的不断涌现,VUE3作为一个快速、灵活、易上手的前端框架备受热爱。接下来,我们就来一起学习VUE3的基础知识,制作一个简单的视频播放器。一、安装VUE3首先,我们需要在本地安装VUE3。打开命令行工具,执行以下命令:npminstallvue@next接着,新建一个HTML文件,引入VUE3:<!doctypehtml>

VAE是一种生成模型,全称是VariationalAutoencoder,中文译作变分自编码器。它是一种无监督的学习算法,可以用来生成新的数据,比如图像、音频、文本等。与普通的自编码器相比,VAE更加灵活和强大,能够生成更加复杂和真实的数据。Python是目前使用最广泛的编程语言之一,也是深度学习的主要工具之一。在Python中,有许多优秀的机器学习和深度

随着互联网的普及,验证码已经成为了登录、注册、找回密码等操作的必要流程。在Gin框架中,实现验证码功能也变得异常简单。本文将介绍如何在Gin框架中使用第三方库实现验证码功能,并提供示例代码供读者参考。一、安装依赖库在使用验证码之前,我们需要安装一个第三方库goCaptcha。安装goCaptcha可以使用goget命令:$goget-ugithub

Golang是一门功能强大且高效的编程语言,可以用于开发各种应用程序和服务。在Golang中,指针是一种非常重要的概念,它可以帮助我们更灵活和高效地操作数据。指针转换是指在不同类型之间进行指针操作的过程,本文将通过具体的实例来学习Golang中指针转换的最佳实践。1.基本概念在Golang中,每个变量都有一个地址,地址就是变量在内存中的位置。

随着互联网的迅速发展,数据已成为了当今信息时代最为重要的资源之一。而网络爬虫作为一种自动化获取和处理网络数据的技术,正越来越受到人们的关注和应用。本文将介绍如何使用PHP开发一个简单的网络爬虫,并实现自动化获取网络数据的功能。一、网络爬虫概述网络爬虫是一种自动化获取和处理网络资源的技术,其主要工作过程是模拟浏览器行为,自动访问指定的URL地址并提取所

生成对抗网络(GAN,GenerativeAdversarialNetworks)是一种深度学习算法,它通过两个神经网络互相竞争的方式来生成新的数据。GAN被广泛用于图像、音频、文字等领域的生成任务。在本文中,我们将使用Python编写一个GAN算法实例,用于生成手写数字图像。数据集准备我们将使用MNIST数据集作为我们的训练数据集。MNIST数据集包含

快速上手Django框架:详细教程和实例引言:Django是一款高效灵活的PythonWeb开发框架,由MTV(Model-Template-View)架构驱动。它拥有简单明了的语法和强大的功能,能够帮助开发者快速构建可靠且易于维护的Web应用程序。本文将详细介绍Django的使用方法,并提供具体实例和代码示例,帮助读者快速上手Django框架。一、安装D


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

WebStorm Mac 버전
유용한 JavaScript 개발 도구

mPDF
mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

드림위버 CS6
시각적 웹 개발 도구

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

뜨거운 주제



