이 기사는 주로 Nodejs 고급: 암호화 모듈에서 마스터해야 하는 기본 보안 지식을 공유합니다. 이것이 모든 사람에게 도움이 되기를 바랍니다. 인터넷 시대에 네트워크상의 데이터 양은 매일 놀라운 속도로 증가하고 있습니다. 동시에 다양한 네트워크 보안 문제도 속속 등장하고 있다. 오늘날 정보보안의 중요성이 점점 더 부각되고 있는 만큼, 개발자로서 보안에 대한 이해를 강화하고 기술적 수단을 통해 서비스의 보안을 강화해야 합니다.
crypto
모듈은 nodejs의 핵심 모듈 중 하나이며 다이제스트 작업, 암호화, 전자 서명 등 보안 관련 기능을 제공합니다. 많은 초보자는 긴 API 목록을 시작하는 방법을 모르기 때문에 보안 분야에 대한 많은 지식이 필요합니다. crypto
模块是nodejs的核心模块之一,它提供了安全相关的功能,如摘要运算、加密、电子签名等。很多初学者对着长长的API列表,不知如何上手,因此它背后涉及了大量安全领域的知识。
本文重点讲解API背后的理论知识,主要包括如下内容:
摘要(hash)、基于摘要的消息验证码(HMAC)
对称加密、非对称加密、电子签名
分组加密模式
本文摘录自《Nodejs学习笔记》,更多章节及更新,请访问 github主页地址。
二、摘要(hash)
摘要(digest):将长度不固定的消息作为输入,通过运行hash函数,生成固定长度的输出,这段输出就叫做摘要。通常用来验证消息完整、未被篡改。
摘要运算是不可逆的。也就是说,输入固定的情况下,产生固定的输出。但知道输出的情况下,无法反推出输入。
伪代码如下。
digest = Hash(message)
常见的摘要算法 与 对应的输出位数如下:
MD5:128位
SHA-1:160位
SHA256 :256位
SHA512:512位
nodejs中的例子:
var crypto = require('crypto'); var md5 = crypto.createHash('md5'); var message = 'hello'; var digest = md5.update(message, 'utf8').digest('hex'); console.log(digest); // 输出如下:注意这里是16进制 // 5d41402abc4b2a76b9719d911017c592
备注:在各类文章或文献中,摘要、hash、散列 这几个词经常会混用,导致不少初学者看了一脸懵逼,其实大部分时候指的都是一回事,记住上面对摘要的定义就好了。
三、MAC、HMAC
MAC(Message Authentication Code):消息认证码,用以保证数据的完整性。运算结果取决于消息本身、秘钥。
MAC可以有多种不同的实现方式,比如HMAC。
HMAC(Hash-based Message Authentication Code):可以粗略地理解为带秘钥的hash函数。
nodejs例子如下:
const crypto = require('crypto'); // 参数一:摘要函数 // 参数二:秘钥 let hmac = crypto.createHmac('md5', '123456'); let ret = hmac.update('hello').digest('hex'); console.log(ret); // 9c699d7af73a49247a239cb0dd2f8139
四、对称加密、非对称加密
加密/解密:给定明文,通过一定的算法,产生加密后的密文,这个过程叫加密。反过来就是解密。
encryptedText = encrypt( plainText )
plainText = decrypt( encryptedText )
秘钥:为了进一步增强加/解密算法的安全性,在加/解密的过程中引入了秘钥。秘钥可以视为加/解密算法的参数,在已知密文的情况下,如果不知道解密所用的秘钥,则无法将密文解开。
encryptedText = encrypt(plainText, encryptKey)
plainText = decrypt(encryptedText, decryptKey)
根据加密、解密所用的秘钥是否相同,可以将加密算法分为对称加密、非对称加密。
1、对称加密
加密、解密所用的秘钥是相同的,即encryptKey === decryptKey
。
常见的对称加密算法:DES、3DES、AES、Blowfish、RC5、IDEA。
加、解密伪代码:
encryptedText = encrypt(plainText, key); // 加密
plainText = decrypt(encryptedText, key); // 解密
2、非对称加密
又称公开秘钥加密。加密、解密所用的秘钥是不同的,即encryptKey !== decryptKey
대칭 암호화, 비대칭 암호화, 전자 서명
블록 암호화 모드
이 글은 "Nodejs 연구 노트"에서 발췌한 것입니다. 더 많은 장과 업데이트를 보려면 github 홈페이지 주소를 방문하세요.
2. 다이제스트(해시) 다이제스트(다이제스트): 가변 길이의 메시지를 입력으로 받아 해시 함수를 실행하여 고정 길이 출력을 생성합니다. 일반적으로 메시지가 완전하고 변조되지 않았는지 확인하는 데 사용됩니다.
다이제스트 작업은 되돌릴 수 없습니다. 즉, 입력이 고정되면 고정된 출력이 생성됩니다. 그러나 출력을 알면 입력을 추론할 수 없습니다.
의사 코드는 다음과 같습니다.
digest = Hash(message)
일반적인 다이제스트 알고리즘과 해당 출력 숫자는 다음과 같습니다.
MD5: 128비트
SHA-1: 160비트-
SHA256: 256비트 🎜🎜🎜🎜SHA512: 512비트 🎜🎜🎜nodejs의 예: 🎜
01 -- if lth mod k = k-1 02 02 -- if lth mod k = k-2 . . . k k ... k k -- if lth mod k = 0
🎜참고: 다양한 기사나 문서에서 abstract, hash, hash 단어는 종종 같은 의미로 사용됩니다. 사실 대부분의 경우 동일한 내용을 언급하는 경우가 많아 위의 Abstract 정의만 기억하면 됩니다. 🎜🎜3. MAC, HMAC🎜🎜MAC(메시지 인증 코드): 데이터 무결성을 보장하는 데 사용되는 메시지 인증 코드입니다. 작업 결과는 메시지 자체와 비밀 키에 따라 달라집니다. 🎜🎜MAC는 HMAC와 같이 다양한 방식으로 구현될 수 있습니다. 🎜🎜HMAC(해시 기반 메시지 인증 코드): 대략적으로 비밀 키를 갖는 해시 함수로 이해될 수 있습니다. 🎜🎜nodejs 예제는 다음과 같습니다. 🎜rrreee🎜4. 대칭 암호화, 비대칭 암호화🎜🎜🎜암호화/복호화🎜: 일반 텍스트가 주어지면 특정 알고리즘을 통해 암호화된 암호문이 생성됩니다. 그 반대는 암호 해독입니다. 🎜🎜encryptedText = encrypt(plainText)🎜plainText = decrypt(encryptedText)🎜🎜🎜비밀 키🎜: 암호화/복호화 알고리즘의 보안을 더욱 강화하기 위해 암호화/복호화 프로세스에 비밀 키가 도입됩니다. 비밀키는 암복호화 알고리즘의 매개변수로 볼 수 있으며, 암호문을 알면 복호화에 사용되는 비밀키를 알 수 없으면 암호문을 복호화할 수 없다. 🎜🎜encryptedText = encrypt(plainText, encryptKey)🎜plainText = decrypt(encryptedText, decryptKey)🎜🎜암호화와 복호화에 사용된 비밀키가 동일한지에 따라 암호화 알고리즘은 🎜대칭암호🎜와 🎜비대칭으로 나눌 수 있습니다. 암호화🎜. 🎜🎜1. 대칭 암호화🎜🎜암호화와 복호화에 사용되는 비밀키는 동일합니다. 즉,encryptKey === decryptKey
입니다. 🎜🎜일반적인 대칭 암호화 알고리즘: DES, 3DES, AES, Blowfish, RC5, IDEA. 🎜🎜의사 코드 추가 및 해독: 🎜🎜encryptedText = encrypt(plainText, key); // 암호화 🎜plainText = decrypt(encryptedText, key); // 해독 🎜🎜2. 공개 키 암호화라고도 함. 암호화와 복호화에 사용되는 비밀 키는 서로 다릅니다. 즉,encryptKey !== decryptKey
입니다. 🎜🎜암호화 키는 공개되어 있으며 공개 키라고 합니다. 해독 키는 비밀로 유지되며 비밀 키라고 합니다. 🎜🎜일반적인 비대칭 암호화 알고리즘: RSA, DSA, ElGamal. 🎜🎜의사 코드 추가 및 해독: 🎜🎜encryptedText = encrypt(plainText, publicKey); // 암호화 🎜plainText = decrypt(encryptedText, privateKey); // 해독 🎜🎜3. 비밀키, 컴퓨팅 속도에도 차이가 있습니다. 일반적으로 말하면: 🎜🎜🎜🎜대칭 암호화는 비대칭 암호화보다 빠릅니다. 🎜🎜🎜🎜비대칭 암호화는 일반적으로 짧은 텍스트를 암호화하는 데 사용되며 대칭 암호화는 일반적으로 긴 텍스트를 암호화하는 데 사용됩니다. 🎜🎜🎜🎜핸드셰이크 단계에서 RSA 교환을 통해 대칭 키를 생성할 수 있는 HTTPS 프로토콜과 같이 두 가지를 조합하여 사용할 수 있습니다. 후속 통신 단계에서는 대칭 암호화 알고리즘을 사용하여 데이터를 암호화할 수 있으며, 핸드셰이크 단계에서 비밀 키가 생성됩니다. 🎜🎜참고: 대칭 키 교환은 반드시 RSA를 통해 수행될 필요는 없지만 DH와 같은 것을 통해 수행될 수도 있습니다. 여기서는 확장하지 않습니다. 🎜🎜5. 디지털 서명🎜🎜 🎜서명🎜을 보면 🎜디지털 서명🎜의 목적을 대략 짐작할 수 있습니다. 주요 기능은 다음과 같습니다. 🎜🎜🎜🎜정보가 특정 주제에서 나온 것인지 확인합니다. 🎜 确认信息完整、未被篡改。
为了达到上述目的,需要有两个过程:
发送方:生成签名。
接收方:验证签名。
1、发送方生成签名
计算原始信息的摘要。
通过私钥对摘要进行签名,得到电子签名。
将原始信息、电子签名,发送给接收方。
附:签名伪代码
digest = hash(message); // 计算摘要
digitalSignature = sign(digest, priviteKey); // 计算数字签名
2、接收方验证签名
通过公钥解开电子签名,得到摘要D1。(如果解不开,信息来源主体校验失败)
计算原始信息的摘要D2。
对比D1、D2,如果D1等于D2,说明原始信息完整、未被篡改。
附:签名验证伪代码
digest1 = verify(digitalSignature, publicKey); // 获取摘要
digest2 = hash(message); // 计算原始信息的摘要
digest1 === digest2 // 验证是否相等
3、对比非对称加密
由于RSA算法的特殊性,加密/解密、签名/验证 看上去特别像,很多同学都很容易混淆。先记住下面结论,后面有时间再详细介绍。
加密/解密:公钥加密,私钥解密。
签名/验证:私钥签名,公钥验证。
六、分组加密模式、填充、初始化向量
常见的对称加密算法,如AES、DES都采用了分组加密模式。这其中,有三个关键的概念需要掌握:模式、填充、初始化向量。
搞清楚这三点,才会知道crypto模块对称加密API的参数代表什么含义,出了错知道如何去排查。
1、分组加密模式
所谓的分组加密,就是将(较长的)明文拆分成固定长度的块,然后对拆分的块按照特定的模式进行加密。
常见的分组加密模式有:ECB(不安全)、CBC(最常用)、CFB、OFB、CTR等。
以最简单的ECB为例,先将消息拆分成等分的模块,然后利用秘钥进行加密。
图片来源:这里,更多关于分组加密模式的介绍可以参考 wiki。
后面假设每个块的长度为128位
2、初始化向量:IV
为了增强算法的安全性,部分分组加密模式(CFB、OFB、CTR)中引入了初始化向量(IV),使得加密的结果随机化。也就是说,对于同一段明文,IV不同,加密的结果不同。
以CBC为例,每一个数据块,都与前一个加密块进行亦或运算后,再进行加密。对于第一个数据块,则是与IV进行亦或。
IV的大小跟数据块的大小有关(128位),跟秘钥的长度无关。
如图所示,图片来源 这里
3、填充:padding
分组加密模式需要对长度固定的块进行加密。分组拆分完后,最后一个数据块长度可能小于128位,此时需要进行填充以满足长度要求。
填充方式有多重。常见的填充方式有PKCS7。
假设分组长度为k字节,最后一个分组长度为k-last,可以看到:
不管明文长度是多少,加密之前都会会对明文进行填充 (不然解密函数无法区分最后一个分组是否被填充了,因为存在最后一个分组长度刚好等于k的情况)
如果最后一个分组长度等于k-last === k,那么填充内容为一个完整的分组 k k k ... k (k个字节)
如果最后一个分组长度小于k-last
01 -- if lth mod k = k-1 02 02 -- if lth mod k = k-2 . . . k k ... k k -- if lth mod k = 0
概括来说
分组加密:先将明文切分成固定长度的块(128位),再进行加密。
分组加密的几种模式:ECB(不安全)、CBC(最常用)、CFB、OFB、CTR。
填充(padding):部分加密模式,当最后一个块的长度小于128位时,需要通过特定的方式进行填充。(ECB、CBC需要填充,CFB、OFB、CTR不需要填充)
初始化向量(IV):部分加密模式(CFB、OFB、CTR)会将 明文块 与 前一个密文块进行亦或操作。对于第一个明文块,不存在前一个密文块,因此需要提供初始化向量IV(把IV当做第一个明文块 之前的 密文块)。此外,IV也可以让加密结果随机化。
관련 권장 사항:
위 내용은 Nodejs 암호화 모듈의 기본 보안 지식 공유의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

JavaScript는 웹 페이지의 상호 작용과 역학을 향상시키기 때문에 현대 웹 사이트의 핵심입니다. 1) 페이지를 새로 고치지 않고 콘텐츠를 변경할 수 있습니다. 2) Domapi를 통해 웹 페이지 조작, 3) 애니메이션 및 드래그 앤 드롭과 같은 복잡한 대화식 효과를 지원합니다. 4) 성능 및 모범 사례를 최적화하여 사용자 경험을 향상시킵니다.

C 및 JavaScript는 WebAssembly를 통한 상호 운용성을 달성합니다. 1) C 코드는 WebAssembly 모듈로 컴파일되어 컴퓨팅 전력을 향상시키기 위해 JavaScript 환경에 도입됩니다. 2) 게임 개발에서 C는 물리 엔진 및 그래픽 렌더링을 처리하며 JavaScript는 게임 로직 및 사용자 인터페이스를 담당합니다.

JavaScript는 웹 사이트, 모바일 응용 프로그램, 데스크탑 응용 프로그램 및 서버 측 프로그래밍에서 널리 사용됩니다. 1) 웹 사이트 개발에서 JavaScript는 HTML 및 CSS와 함께 DOM을 운영하여 동적 효과를 달성하고 jQuery 및 React와 같은 프레임 워크를 지원합니다. 2) 반응 및 이온 성을 통해 JavaScript는 크로스 플랫폼 모바일 애플리케이션을 개발하는 데 사용됩니다. 3) 전자 프레임 워크를 사용하면 JavaScript가 데스크탑 애플리케이션을 구축 할 수 있습니다. 4) node.js는 JavaScript가 서버 측에서 실행되도록하고 동시 요청이 높은 높은 요청을 지원합니다.

Python은 데이터 과학 및 자동화에 더 적합한 반면 JavaScript는 프론트 엔드 및 풀 스택 개발에 더 적합합니다. 1. Python은 데이터 처리 및 모델링을 위해 Numpy 및 Pandas와 같은 라이브러리를 사용하여 데이터 과학 및 기계 학습에서 잘 수행됩니다. 2. 파이썬은 간결하고 자동화 및 스크립팅이 효율적입니다. 3. JavaScript는 프론트 엔드 개발에 없어서는 안될 것이며 동적 웹 페이지 및 단일 페이지 응용 프로그램을 구축하는 데 사용됩니다. 4. JavaScript는 Node.js를 통해 백엔드 개발에 역할을하며 전체 스택 개발을 지원합니다.

C와 C는 주로 통역사와 JIT 컴파일러를 구현하는 데 사용되는 JavaScript 엔진에서 중요한 역할을합니다. 1) C는 JavaScript 소스 코드를 구문 분석하고 추상 구문 트리를 생성하는 데 사용됩니다. 2) C는 바이트 코드 생성 및 실행을 담당합니다. 3) C는 JIT 컴파일러를 구현하고 런타임에 핫스팟 코드를 최적화하고 컴파일하며 JavaScript의 실행 효율을 크게 향상시킵니다.

실제 세계에서 JavaScript의 응용 프로그램에는 프론트 엔드 및 백엔드 개발이 포함됩니다. 1) DOM 운영 및 이벤트 처리와 관련된 TODO 목록 응용 프로그램을 구축하여 프론트 엔드 애플리케이션을 표시합니다. 2) Node.js를 통해 RESTFULAPI를 구축하고 Express를 통해 백엔드 응용 프로그램을 시연하십시오.

웹 개발에서 JavaScript의 주요 용도에는 클라이언트 상호 작용, 양식 검증 및 비동기 통신이 포함됩니다. 1) DOM 운영을 통한 동적 컨텐츠 업데이트 및 사용자 상호 작용; 2) 사용자가 사용자 경험을 향상시키기 위해 데이터를 제출하기 전에 클라이언트 확인이 수행됩니다. 3) 서버와의 진실한 통신은 Ajax 기술을 통해 달성됩니다.

보다 효율적인 코드를 작성하고 성능 병목 현상 및 최적화 전략을 이해하는 데 도움이되기 때문에 JavaScript 엔진이 내부적으로 작동하는 방식을 이해하는 것은 개발자에게 중요합니다. 1) 엔진의 워크 플로에는 구문 분석, 컴파일 및 실행; 2) 실행 프로세스 중에 엔진은 인라인 캐시 및 숨겨진 클래스와 같은 동적 최적화를 수행합니다. 3) 모범 사례에는 글로벌 변수를 피하고 루프 최적화, Const 및 Lets 사용 및 과도한 폐쇄 사용을 피하는 것이 포함됩니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

mPDF
mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.
