찾다
백엔드 개발파이썬 튜토리얼Python이 행렬 클래스를 구현하는 방법에 대한 자세한 코드 예

이 글은 Python으로 구현된 행렬 클래스를 주로 소개하고, Python 행렬의 정의, 계산, 변환 및 기타 관련 연산 기술을 완전한 예제 형식으로 분석합니다. 필요한 친구가 참고할 수 있습니다.

이 글의 예제는 설명합니다. Python으로 구현된 행렬 클래스. 참고할 수 있도록 모든 사람과 공유하세요. 세부 사항은 다음과 같습니다.

과학적 계산은 행렬 연산과 분리될 수 없습니다. 물론 Python에는 이미 아주 좋은 기성 라이브러리가 있습니다. numpy(간단한 numpy 설치 및 사용

나는 이 매트릭스 클래스를 썼고 바퀴를 재발명하려는 의도가 아니라 단지 연습 차원에서 여기에 기록했습니다.

참고: 이 클래스의 모든 기능이 아직 구현되지는 않았으며 천천히 개선될 예정입니다.

전체 코드:


import copy
class Matrix:
  '''矩阵类'''
  def __init__(self, row, column, fill=0.0):
    self.shape = (row, column)
    self.row = row
    self.column = column
    self._matrix = [[fill]*column for i in range(row)]
  # 返回元素m(i, j)的值: m[i, j]
  def __getitem__(self, index):
    if isinstance(index, int):
      return self._matrix[index-1]
    elif isinstance(index, tuple):
      return self._matrix[index[0]-1][index[1]-1]
  # 设置元素m(i,j)的值为s: m[i, j] = s
  def __setitem__(self, index, value):
    if isinstance(index, int):
      self._matrix[index-1] = copy.deepcopy(value)
    elif isinstance(index, tuple):
      self._matrix[index[0]-1][index[1]-1] = value
  def __eq__(self, N):
    '''相等'''
    # A == B
    assert isinstance(N, Matrix), "类型不匹配,不能比较"
    return N.shape == self.shape # 比较维度,可以修改为别的
  def __add__(self, N):
    '''加法'''
    # A + B
    assert N.shape == self.shape, "维度不匹配,不能相加"
    M = Matrix(self.row, self.column)
    for r in range(self.row):
      for c in range(self.column):
        M[r, c] = self[r, c] + N[r, c]
    return M
  def __sub__(self, N):
    '''减法'''
    # A - B
    assert N.shape == self.shape, "维度不匹配,不能相减"
    M = Matrix(self.row, self.column)
    for r in range(self.row):
      for c in range(self.column):
        M[r, c] = self[r, c] - N[r, c]
    return M
  def __mul__(self, N):
    '''乘法'''
    # A * B (或:A * 2.0)
    if isinstance(N, int) or isinstance(N,float):
      M = Matrix(self.row, self.column)
      for r in range(self.row):
        for c in range(self.column):
          M[r, c] = self[r, c]*N
    else:
      assert N.row == self.column, "维度不匹配,不能相乘"
      M = Matrix(self.row, N.column)
      for r in range(self.row):
        for c in range(N.column):
          sum = 0
          for k in range(self.column):
            sum += self[r, k] * N[k, r]
          M[r, c] = sum
    return M
  def __p__(self, N):
    '''除法'''
    # A / B
    pass
  def __pow__(self, k):
    '''乘方'''
    # A**k
    assert self.row == self.column, "不是方阵,不能乘方"
    M = copy.deepcopy(self)
    for i in range(k):
      M = M * self
    return M
  def rank(self):
    '''矩阵的秩'''
    pass
  def trace(self):
    '''矩阵的迹'''
    pass
  def adjoint(self):
    '''伴随矩阵'''
    pass
  def invert(self):
    '''逆矩阵'''
    assert self.row == self.column, "不是方阵"
    M = Matrix(self.row, self.column*2)
    I = self.identity() # 单位矩阵
    I.show()#############################
    # 拼接
    for r in range(1,M.row+1):
      temp = self[r]
      temp.extend(I[r])
      M[r] = copy.deepcopy(temp)
    M.show()#############################
    # 初等行变换
    for r in range(1, M.row+1):
      # 本行首元素(M[r, r])若为 0,则向下交换最近的当前列元素非零的行
      if M[r, r] == 0:
        for rr in range(r+1, M.row+1):
          if M[rr, r] != 0:
            M[r],M[rr] = M[rr],M[r] # 交换两行
          break
      assert M[r, r] != 0, '矩阵不可逆'
      # 本行首元素(M[r, r])化为 1
      temp = M[r,r] # 缓存
      for c in range(r, M.column+1):
        M[r, c] /= temp
        print("M[{0}, {1}] /= {2}".format(r,c,temp))
      M.show()
      # 本列上、下方的所有元素化为 0
      for rr in range(1, M.row+1):
        temp = M[rr, r] # 缓存
        for c in range(r, M.column+1):
          if rr == r:
            continue
          M[rr, c] -= temp * M[r, c]
          print("M[{0}, {1}] -= {2} * M[{3}, {1}]".format(rr, c, temp,r))
        M.show()
    # 截取逆矩阵
    N = Matrix(self.row,self.column)
    for r in range(1,self.row+1):
      N[r] = M[r][self.row:]
    return N
  def jieti(self):
    '''行简化阶梯矩阵'''
    pass
  def transpose(self):
    '''转置'''
    M = Matrix(self.column, self.row)
    for r in range(self.column):
      for c in range(self.row):
        M[r, c] = self[c, r]
    return M
  def cofactor(self, row, column):
    '''代数余子式(用于行列式展开)'''
    assert self.row == self.column, "不是方阵,无法计算代数余子式"
    assert self.row >= 3, "至少是3*3阶方阵"
    assert row <= self.row and column <= self.column, "下标超出范围"
    M = Matrix(self.column-1, self.row-1)
    for r in range(self.row):
      if r == row:
        continue
      for c in range(self.column):
        if c == column:
          continue
        rr = r-1 if r > row else r
        cc = c-1 if c > column else c
        M[rr, cc] = self[r, c]
    return M
  def det(self):
    &#39;&#39;&#39;计算行列式(determinant)&#39;&#39;&#39;
    assert self.row == self.column,"非行列式,不能计算"
    if self.shape == (2,2):
      return self[1,1]*self[2,2]-self[1,2]*self[2,1]
    else:
      sum = 0.0
      for c in range(self.column+1):
        sum += (-1)**(c+1)*self[1,c]*self.cofactor(1,c).det()
      return sum
  def zeros(self):
    &#39;&#39;&#39;全零矩阵&#39;&#39;&#39;
    M = Matrix(self.column, self.row, fill=0.0)
    return M
  def ones(self):
    &#39;&#39;&#39;全1矩阵&#39;&#39;&#39;
    M = Matrix(self.column, self.row, fill=1.0)
    return M
  def identity(self):
    &#39;&#39;&#39;单位矩阵&#39;&#39;&#39;
    assert self.row == self.column, "非n*n矩阵,无单位矩阵"
    M = Matrix(self.column, self.row)
    for r in range(self.row):
      for c in range(self.column):
        M[r, c] = 1.0 if r == c else 0.0
    return M
  def show(self):
    &#39;&#39;&#39;打印矩阵&#39;&#39;&#39;
    for r in range(self.row):
      for c in range(self.column):
        print(self[r+1, c+1],end=&#39; &#39;)
      print()
if __name__ == &#39;__main__&#39;:
  m = Matrix(3,3,fill=2.0)
  n = Matrix(3,3,fill=3.5)
  m[1] = [1.,1.,2.]
  m[2] = [1.,2.,1.]
  m[3] = [2.,1.,1.]
  p = m * n
  q = m*2.1
  r = m**3
  #r.show()
  #q.show()
  #print(p[1,1])
  #r = m.invert()
  #s = r*m
  print()
  m.show()
  print()
  #r.show()
  print()
  #s.show()
  print()
  print(m.det())
.

위 내용은 Python이 행렬 클래스를 구현하는 방법에 대한 자세한 코드 예의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
파이썬 : 기본 응용 프로그램 탐색파이썬 : 기본 응용 프로그램 탐색Apr 10, 2025 am 09:41 AM

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 ​​같은 작업에 적합합니다.

2 시간 안에 얼마나 많은 파이썬을 배울 수 있습니까?2 시간 안에 얼마나 많은 파이썬을 배울 수 있습니까?Apr 09, 2025 pm 04:33 PM

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

10 시간 이내에 프로젝트 및 문제 중심 방법에서 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법?10 시간 이내에 프로젝트 및 문제 중심 방법에서 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법?Apr 02, 2025 am 07:18 AM

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?

중간 독서를 위해 Fiddler를 사용할 때 브라우저에서 감지되는 것을 피하는 방법은 무엇입니까?중간 독서를 위해 Fiddler를 사용할 때 브라우저에서 감지되는 것을 피하는 방법은 무엇입니까?Apr 02, 2025 am 07:15 AM

Fiddlerevery Where를 사용할 때 Man-in-the-Middle Reading에 Fiddlereverywhere를 사용할 때 감지되는 방법 ...

Python 3.6에 피클 파일을로드 할 때 '__builtin__'모듈을 찾을 수없는 경우 어떻게해야합니까?Python 3.6에 피클 파일을로드 할 때 '__builtin__'모듈을 찾을 수없는 경우 어떻게해야합니까?Apr 02, 2025 am 07:12 AM

Python 3.6에 피클 파일로드 3.6 환경 보고서 오류 : modulenotfounderror : nomodulename ...

경치 좋은 스팟 코멘트 분석에서 Jieba Word 세분화의 정확성을 향상시키는 방법은 무엇입니까?경치 좋은 스팟 코멘트 분석에서 Jieba Word 세분화의 정확성을 향상시키는 방법은 무엇입니까?Apr 02, 2025 am 07:09 AM

경치 좋은 스팟 댓글 분석에서 Jieba Word 세분화 문제를 해결하는 방법은 무엇입니까? 경치가 좋은 스팟 댓글 및 분석을 수행 할 때 종종 Jieba Word 세분화 도구를 사용하여 텍스트를 처리합니다 ...

정규 표현식을 사용하여 첫 번째 닫힌 태그와 정지와 일치하는 방법은 무엇입니까?정규 표현식을 사용하여 첫 번째 닫힌 태그와 정지와 일치하는 방법은 무엇입니까?Apr 02, 2025 am 07:06 AM

정규 표현식을 사용하여 첫 번째 닫힌 태그와 정지와 일치하는 방법은 무엇입니까? HTML 또는 기타 마크 업 언어를 다룰 때는 정규 표현식이 종종 필요합니다.

Inversiting.com의 크롤링 메커니즘을 우회하는 방법은 무엇입니까?Inversiting.com의 크롤링 메커니즘을 우회하는 방법은 무엇입니까?Apr 02, 2025 am 07:03 AM

Investing.com의 크롤링 전략 이해 많은 사람들이 종종 Investing.com (https://cn.investing.com/news/latest-news)에서 뉴스 데이터를 크롤링하려고합니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

ZendStudio 13.5.1 맥

ZendStudio 13.5.1 맥

강력한 PHP 통합 개발 환경

VSCode Windows 64비트 다운로드

VSCode Windows 64비트 다운로드

Microsoft에서 출시한 강력한 무료 IDE 편집기

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경