>Java >java지도 시간 >Java의 데메테르의 법칙에 대한 자세한 설명

Java의 데메테르의 법칙에 대한 자세한 설명

黄舟
黄舟원래의
2017-08-07 10:30:251248검색

이 글에서는 데메테르의 법칙을 주로 소개합니다. 데메테르의 법칙은 클래스에서 메소드와 속성을 생성할 때 따라야 할 규칙입니다. 관심 있는 분들은 배우시면 됩니다.

정의: 객체는 다른 객체에 대해 변경되지 않아야 합니다. .

문제의 원인: 클래스 간 관계가 가까울수록 한 클래스가 변경되면 다른 클래스에 미치는 영향도 커집니다.

해결책: 클래스 간의 결합을 최대한 줄이세요.

우리는 프로그래밍을 접한 이후로 소프트웨어 프로그래밍의 일반 원칙인 낮은 결합과 높은 응집력을 알고 있습니다. 프로세스 지향 프로그래밍이든 객체 지향 프로그래밍이든 모듈 간의 결합을 최대한 낮게 유지해야만 코드 재사용률을 높일 수 있습니다. 낮은 결합도의 장점은 자명합니다. 그런데 프로그래밍을 통해 어떻게 낮은 결합도를 달성할 수 있을까요? 이것이 바로 데메테르의 법칙이 달성하려는 목적입니다.


가장 잘 알려지지 않은 원리라고도 알려진 데미트의 법칙은 1987년 미국 노스이스턴 대학교의 이안 홀랜드가 처음 제안했습니다. 평신도의 관점에서 보면 클래스가 자신이 의존하는 클래스에 대해 덜 알수록 좋습니다. 즉, 종속 클래스의 경우 로직이 아무리 복잡하더라도 로직은 최대한 클래스 내부에 캡슐화되어야 하며, 제공되는 퍼블릭 메소드 외에는 어떠한 정보도 외부로 유출되지 않습니다. 데메테르의 법칙은 더 간단한 정의를 가지고 있습니다: 직접적인 친구들과만 소통하세요. 먼저 직접적인 친구가 무엇인지 설명하겠습니다. 각 객체는 다른 객체와 결합 관계를 갖습니다. 두 객체 사이에 결합 관계가 있는 한 두 객체는 ​​친구라고 합니다. 의존성, 연관, 결합, 집합 등과 같은 결합 방법에는 여러 가지가 있습니다. 그 중 멤버 변수, 메소드 매개변수, 메소드 반환 값에 나타나는 클래스를 다이렉트 프렌드라고 부르지만, 지역 변수에 나타나는 클래스는 다이렉트 프렌드가 아닙니다. 즉, 익숙하지 않은 클래스가 클래스 내부에 지역 변수로 나타나지 않는 것이 가장 좋습니다.


예를 들어보세요. 하위 단위에 지점과 직속 부서가 포함된 그룹 회사가 있습니다. 이제 모든 하위 단위의 사원 ID를 인쇄해야 합니다. 먼저 데메테르의 법칙을 위반하는 디자인을 살펴보겠습니다.



 //总公司员工
class Employee{
 private String id;
 public void setId(String id){
 this.id = id;
 }
 public String getId(){
 return id;
 }
}

//分公司员工
class SubEmployee{
 private String id;
 public void setId(String id){
 this.id = id;
 }
 public String getId(){
 return id;
 }
}

class SubCompanyManager{
 public List<SubEmployee> getAllEmployee(){
 List<SubEmployee> list = new ArrayList<SubEmployee>();
 for(int i=0; i<100; i++){
  SubEmployee emp = new SubEmployee();
  //为分公司人员按顺序分配一个ID
  emp.setId("分公司"+i);
  list.add(emp);
 }
 return list;
 }
}

class CompanyManager{

 public List<Employee> getAllEmployee(){
 List<Employee> list = new ArrayList<Employee>();
 for(int i=0; i<30; i++){
  Employee emp = new Employee();
  //为总公司人员按顺序分配一个ID
  emp.setId("总公司"+i);
  list.add(emp);
 }
 return list;
 }
 
 public void printAllEmployee(SubCompanyManager sub){
 List<SubEmployee> list1 = sub.getAllEmployee();
 for(SubEmployee e:list1){
  System.out.println(e.getId());
 }

 List<Employee> list2 = this.getAllEmployee();
 for(Employee e:list2){
  System.out.println(e.getId());
 }
 }
}

public class Client{
 public static void main(String[] args){
 CompanyManager e = new CompanyManager();
 e.printAllEmployee(new SubCompanyManager());
 }
}

이 디자인의 주요 문제는 이제 CompanyManager에 있습니다. Dimit의 법칙에 따르면 의사소통은 직접적인 친구하고만 이루어지며 SubEmployee 클래스는 CompanyManager 클래스의 직접적인 친구가 아닙니다. 지역 변수의 형태는 직접적인 친구에 속하지 않음) 논리적으로 말하면 본사는 지점과만 연결되어야 하며 지점의 직원과 접촉이 필요하지 않습니다. 이 디자인은 분명히 불필요한 연결을 추가합니다. 데메테르의 법칙에 따르면, 수업 중 간접적인 친구 관계와의 이러한 결합은 피해야 합니다. 수정된 코드는 다음과 같습니다.


class SubCompanyManager{
 public List<SubEmployee> getAllEmployee(){
 List<SubEmployee> list = new ArrayList<SubEmployee>();
 for(int i=0; i<100; i++){
  SubEmployee emp = new SubEmployee();
  //为分公司人员按顺序分配一个ID
  emp.setId("分公司"+i);
  list.add(emp);
 }
 return list;
 }
 public void printEmployee(){
 List<SubEmployee> list = this.getAllEmployee();
 for(SubEmployee e:list){
  System.out.println(e.getId());
 }
 }
}

class CompanyManager{
 public List<Employee> getAllEmployee(){
 List<Employee> list = new ArrayList<Employee>();
 for(int i=0; i<30; i++){
  Employee emp = new Employee();
  //为总公司人员按顺序分配一个ID
  emp.setId("总公司"+i);
  list.add(emp);
 }
 return list;
 }
 
 public void printAllEmployee(SubCompanyManager sub){
 sub.printEmployee();
 List<Employee> list2 = this.getAllEmployee();
 for(Employee e:list2){
  System.out.println(e.getId());
 }
 }
}

수정 후 지점에 직원 ID를 인쇄하는 방식을 추가하고 본사에서 직접 호출하여 인쇄함으로써 지점 직원과의 커플링을 방지합니다.


데메테르의 법칙의 원래 의도는 클래스 간의 결합을 줄이는 것입니다. 각 클래스는 불필요한 종속성을 줄이므로 실제로 결합 관계를 줄일 수 있습니다. 하지만 모든 것에는 한계가 있습니다. 간접적인 의사 소통은 피할 수 있지만 "중개자"를 통해 의사 소통이 이루어져야 합니다. 예를 들어, 이 예에서는 지점 직원의 "중개자"를 통해 지점과 통신합니다. Demeter 원칙을 과도하게 사용하면 그러한 중개자 및 전송 클래스가 많이 생성되어 시스템 복잡성이 증가합니다. 따라서 디미트의 법칙을 채택할 때는 명확한 구조와 높은 응집력 및 낮은 결합도를 모두 달성하기 위해 반복적으로 절충점을 고려해야 합니다.


위 내용은 Java의 데메테르의 법칙에 대한 자세한 설명의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명:
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.