>웹 프론트엔드 >JS 튜토리얼 >JavaScript의 여러 비재귀 완전 순열 알고리즘 코드 예제에 대한 자세한 설명

JavaScript의 여러 비재귀 완전 순열 알고리즘 코드 예제에 대한 자세한 설명

伊谢尔伦
伊谢尔伦원래의
2017-07-24 13:19:452100검색

回溯(非递归)

<html xmlns="http://www.w3.org/1999/xhtml">  
<head>  
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />  
    <title>Full Permutation(Non-recursive Backtrack) - Mengliao Software</title>  
</head>  
<body>  
<p>  
Full Permutation(Non-recursive Backtrack)<br />  
Mengliao Software Studio - Bosun Network Co., Ltd.<br />  
2012.03.29</p>  
<script type="text/javascript">  
/*  
全排列(非递归回溯)算法  
1、建立位置数组,即对位置进行排列,排列成功后转换为元素的排列;  
2、第n个位置搜索方式与八皇后问题类似。  
*/ 
var count = 0;  
function show(arr) {  
    document.write("P<sub>" + ++count + "</sub>: " + arr + "<br />");  
}  
function seek(index, n) {  
    var flag = false, m = n; //flag为找到位置排列的标志,m保存正在搜索哪个位置  
    do {  
        index[n]++;  
        if (index[n] == index.length) //已无位置可用  
            index[n--] = -1; //重置当前位置,回退到上一个位置  
        else if (!(function () {  
            for (var i = 0; i < n; i++)  
                if (index[i] == index[n]) return true;  
            return false;  
        })()) //该位置未被选择  
            if (m == n) //当前位置搜索完成  
                flag = true;  
            else 
                n++;  
    } while (!flag && n >= 0)  
    return flag;  
}  
function perm(arr) {  
    var index = new Array(arr.length);  
    for (var i = 0; i < index.length; i++)  
        index[i] = -1;  
    for (i = 0; i < index.length - 1; i++)  
        seek(index, i);  
    while (seek(index, index.length - 1)) {  
        var temp = [];  
        for (i = 0; i < index.length; i++)  
            temp.push(arr[index[i]]);  
        show(temp);  
    }  
}  
perm(["e1", "e2", "e3", "e4"]);  
</script>  
</body>  
</html>

排序(非递归)

<html xmlns="http://www.w3.org/1999/xhtml">  
<head>  
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />  
    <title>Full Permutation(Non-recursive Sort) - Mengliao Software</title>  
</head>  
<body>  
<p>  
Full Permutation(Non-recursive Sort)<br />  
Mengliao Software Studio - Bosun Network Co., Ltd.<br />  
2012.03.30</p>  
<script type="text/javascript"> 
/*  
全排列(非递归求顺序)算法  
1、建立位置数组,即对位置进行排列,排列成功后转换为元素的排列;  
2、按如下算法求全排列:  
设P是1~n(位置编号)的一个全排列:p = p1,p2...pn = p1,p2...pj-1,pj,pj+1...pk-1,pk,pk+1...pn  
(1)从排列的尾部开始,找出第一个比右边位置编号小的索引j(j从首部开始计算),即j = max{i | pi < pi+1}  
(2)在pj的右边的位置编号中,找出所有比pj大的位置编号中最小的位置编号的索引k,即 k = max{i | pi > pj}  
   pj右边的位置编号是从右至左递增的,因此k是所有大于pj的位置编号中索引最大的  
(3)交换pj与pk  
(4)再将pj+1...pk-1,pk,pk+1...pn翻转得到排列p&#39; = p1,p2...pj-1,pj,pn...pk+1,pk,pk-1...pj+1  
(5)p&#39;便是排列p的下一个排列  

例如:  
24310是位置编号0~4的一个排列,求它下一个排列的步骤如下:  
(1)从右至左找出排列中第一个比右边数字小的数字2;  
(2)在该数字后的数字中找出比2大的数中最小的一个3;  
(3)将2与3交换得到34210;  
(4)将原来2(当前3)后面的所有数字翻转,即翻转4210,得30124;  
(5)求得24310的下一个排列为30124。  
*/ 
var count = 0;  
function show(arr) {  
    document.write("P<sub>" + ++count + "</sub>: " + arr + "<br />");  
}  
function swap(arr, i, j) {  
    var t = arr[i];  
    arr[i] = arr[j];  
    arr[j] = t;  

}  
function sort(index) {  
    for (var j = index.length - 2; j >= 0 && index[j] > index[j + 1]; j--)  
        ; //本循环从位置数组的末尾开始,找到第一个左边小于右边的位置,即j  
    if (j < 0) return false; //已完成全部排列  
    for (var k = index.length - 1; index[k] < index[j]; k--)  
        ; //本循环从位置数组的末尾开始,找到比j位置大的位置中最小的,即k  
    swap(index, j, k);  
    for (j = j + 1, k = index.length - 1; j < k; j++, k--)  
        swap(index, j, k); //本循环翻转j+1到末尾的所有位置  
    return true;  
}  
function perm(arr) {  
    var index = new Array(arr.length);  
    for (var i = 0; i < index.length; i++)  
        index[i] = i;  
    do {  
        var temp = [];  
        for (i = 0; i < index.length; i++)  
            temp.push(arr[index[i]]);  
        show(temp);  
    } while (sort(index));  
}  
perm(["e1", "e2", "e3", "e4"]);  
</script>  
</body>  
</html>

求模(非递归)

<html xmlns="http://www.w3.org/1999/xhtml">  
<head>  
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />  
    <title>Full Permutation(Non-recursive Modulo) - Mengliao Software</title>  
</head>  
<body>  
<p>Full Permutation(Non-recursive Modulo)<br />  
Mengliao Software Studio - Bosun Network Co., Ltd.<br />  
2012.03.29</p>  
<script type="text/javascript">  
/*  
全排列(非递归求模)算法  
1、初始化存放全排列结果的数组result,与原数组的元素个数相等;  
2、计算n个元素全排列的总数,即n!;  
3、从>=0的任意整数开始循环n!次,每次累加1,记为index;  
4、取第1个元素arr[0],求1进制的表达最低位,即求index模1的值w,将第1个元素(arr[0])插入result的w位置,并将index迭代为index\1;  
5、取第2个元素arr[1],求2进制的表达最低位,即求index模2的值w,将第2个元素(arr[1])插入result的w位置,并将index迭代为index\2;  
6、取第3个元素arr[2],求3进制的表达最低位,即求index模3的值w,将第3个元素(arr[2])插入result的w位置,并将index迭代为index\3;  
7、……  
8、直到取最后一个元素arr[arr.length-1],此时求得一个排列;  
9、当index循环完成,便求得所有排列。  
例:  
求4个元素["a", "b", "c", "d"]的全排列, 共循环4!=24次,可从任意>=0的整数index开始循环,每次累加1,直到循环完index+23后结束;  
假设index=13(或13+24,13+2*24,13+3*24…),因为共4个元素,故迭代4次,则得到的这一个排列的过程为:  
第1次迭代,13/1,商=13,余数=0,故第1个元素插入第0个位置(即下标为0),得["a"];  
第2次迭代,13/2, 商=6,余数=1,故第2个元素插入第1个位置(即下标为1),得["a", "b"];  
第3次迭代,6/3, 商=2,余数=0,故第3个元素插入第0个位置(即下标为0),得["c", "a", "b"];  
第4次迭代,2/4,商=0,余数=2, 故第4个元素插入第2个位置(即下标为2),得["c", "a", "d", "b"];  
*/ 
var count = 0;  
function show(arr) {  
    document.write("P<sub>" + ++count + "</sub>: " + arr + "<br />");  
}  
function perm(arr) {  
    var result = new Array(arr.length);  
    var fac = 1;  
    for (var i = 2; i <= arr.length; i++)  
        fac *= i;  
    for (index = 0; index < fac; index++) {  
        var t = index;  
        for (i = 1; i <= arr.length; i++) {  
            var w = t % i;  
            for (j = i - 1; j > w; j--)  
                result[j] = result[j - 1];  
            result[w] = arr[i - 1];  
            t = Math.floor(t / i);  
        }  
        show(result);  
    }  
}  
perm(["e1", "e2", "e3", "e4"]);  
</script>  
</body>  
</html>

위 내용은 JavaScript의 여러 비재귀 완전 순열 알고리즘 코드 예제에 대한 자세한 설명의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명:
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.