찾다
Javajava지도 시간알고리즘 설계 및 분석을 위한 기반 더미의 예

알고리즘 설계 및 분석을 위한 기반 더미의 예

Jul 24, 2017 pm 01:17 PM
분석하다베이스설계

배열을 사용하여 힙 데이터 저장

package cn.xf.algorithm.ch06ChangeRule;
 
import java.util.ArrayList;
import java.util.List;
 
import org.junit.Test;
 
/**
 *
 * 功能:堆的构造
 * 1、堆可以定义为一颗二叉树,树的节点包含键,并且满足一下条件
 *  1) 树的形状要求:这棵二叉树是基本完备的(完全二叉树),树的每一层都是满的,除了最后一层最右边的元素可能缺位
 *  2) 父母优势,堆特性,每一个节点的键都要大于或者等于他子女的键(对于任何叶子我们认为这都是自动满足的)
 * 
 * 对于堆:
 *   只存在一颗n个节点的完全二叉树他的高度:取下界的 log2的n的对数
 *  堆的根总是包含了堆的最大元素
 *  堆的一个节点以及该节点的子孙也是一个堆
 *  可以用数组的来实现堆,方法是从上到下,从左到右的方式来记录堆的元素。
 * @author xiaofeng
 * @date 2017年7月9日
 * @fileName Heap.java
 *
 */
public class Heap {
    /**
     * 堆的数据存放结构
     */
    private List<Double> heap;
 
    /**
     * 自下而上构建一个堆
     */
    private List<Double> createHeadDownToUp(List<Double> heap) {
        if(heap == null || heap.size() <= 0)
            return heap;
         
        //数据个数
        int nums = heap.size();
        //吧数组整体后移一位,方便数据的计算,因为从0开始,那么2*0还是0,没有体现出2*n就是n的左孩子的基本设定
        heap.add(0, 0d);
         
        //构建一个堆,从数组的中间位置开始,因为中间位子mid的两倍正好差不多是这个树的末尾,而在这个2*mid的附近就是mid这个节点的孩子节点
        for(int i = nums / 2 + 1; i > 0; --i) {
            //获取基准节点的地址
            int baseIndex = i;
            //获取这个节点的值
            double vBaseValue = heap.get(baseIndex);
            boolean isHeap = false; //这个用来判断当前遍历的这三个数字是否满足堆的概念
            //进行堆变换,交换树的节点和孩子节点数值,使当前树满足堆的概念
            //2 * baseIndex <= nums 这个用来判断这颗树的子树也满足堆的定义
            while(!isHeap && 2 * baseIndex <= nums) {
                //获取当前遍历到的数据的左孩子节点的位置
                int maxChildIndex = 2 * baseIndex;
                //从两个孩子节点中获取大的那个位置
                if(maxChildIndex < nums) {
                    //如果左孩子的位置比总长还小,由于完全二叉树的属性,那么必定存在右孩子节点
                    //判断那个孩子节点的数据比较大,使max为大的那个
                    if(heap.get(maxChildIndex) < heap.get(maxChildIndex + 1)) {
                        //如果右孩子比较大
                        maxChildIndex += 1;
                    }
                }
                 
                //再判断,当前 节点的值是不是比孩子节点的值要大,如果是那么就当前子树是满足堆的属性
                //maxChildIndex == nums  那还是瞒住条件,可以进行左子树的比较
                if(maxChildIndex > nums || vBaseValue >= heap.get(maxChildIndex)) {
                    isHeap = true;
                } else {
                    //如果不满住,那么交换,吧大的数据交换到节点上,吧节点的数据换到孩子节点上
                    heap.set(baseIndex, heap.get(maxChildIndex));
                    baseIndex = maxChildIndex;
                    heap.set(baseIndex, vBaseValue);
                }
            }
        }
         
        //去除第一个0,然后返回
        heap.remove(0);
        return heap;
    }
     
    private void shifHeadDownToUp(int i) {
        if (heap == null || heap.size() <= 0)
            return;
         
        // 数据个数
        int nums = heap.size();
        // 吧数组整体后移一位,方便数据的计算,因为从0开始,那么2*0还是0,没有体现出2*n就是n的左孩子的基本设定
        heap.add(0, 0d);
        boolean isHeap = false;
        int baseIndex = i;
        double vBaseValue = heap.get(i);
        while (!isHeap && 2 * baseIndex <= nums) {
            // 获取当前遍历到的数据的左孩子节点的位置
            int maxChildIndex = 2 * baseIndex;
            // 从两个孩子节点中获取大的那个位置
            if (maxChildIndex < nums) {
                // 如果左孩子的位置比总长还小,由于完全二叉树的属性,那么必定存在右孩子节点
                // 判断那个孩子节点的数据比较大,使max为大的那个
                if (heap.get(maxChildIndex) < heap.get(maxChildIndex + 1)) {
                    // 如果右孩子比较大
                    maxChildIndex += 1;
                }
            }
             
            // 再判断,当前 节点的值是不是比孩子节点的值要大,如果是那么就当前子树是满足堆的属性
            // maxChildIndex == nums 那还是瞒住条件,可以进行左子树的比较
            if (maxChildIndex > nums || vBaseValue >= heap.get(maxChildIndex)) {
                isHeap = true;
            } else {
                // 如果不满住,那么交换,吧大的数据交换到节点上,吧节点的数据换到孩子节点上
                heap.set(baseIndex, heap.get(maxChildIndex));
                baseIndex = maxChildIndex;
                heap.set(baseIndex, vBaseValue);
            }
        }
         
        // 去除第一个0,然后返回
        heap.remove(0);
    }
     
    //创建堆
    public Heap() {
        heap = new ArrayList<Double>();
        createHeadDownToUp(heap);
    }
     
    public Heap(List<Double> data) {
        if(data == null || data.size() <= 0) {
            data = new ArrayList<Double>();
        }
        heap = data;
        createHeadDownToUp(heap);
    }
     
    @Override
    public String toString() {
        return heap.toString();
    }
     
    public void add(Double value) {
        if(value == null)
            return;
        heap.add(value);
//      int insertInedx = heap.size();
        //自底向上构建堆
        for(int i = heap.size() / 2; i >= 0; --i) {
            shifHeadDownToUp(i + 1);
        }
    }
     
     
    /**
     * 删除一个元素,获取这个元素的索引位置来删除
     * 1、根的键《和》堆的最后一个键K做交换
     * 2、堆的规模减一
     * 3、严格按照自底向上的够着算法的做法,吧K 向下筛选,堆数据进行堆化
     * @param index
     */
    public void delete(int index) {
        //这个是自底向上进行堆化数据
        //吧最后一个数据填入到要删除的数据中
        Double lastValue = heap.get(heap.size() - 1);
        //删除最后一个元素,吧最后一个元素用来取代这个需要删除的元素
        heap.set(index, lastValue);
        heap.remove(heap.size() - 1);
        //自底向上开始堆化
        for(int i = index; i >= 0; --i)
            shifHeadDownToUp(i + 1);
    }
     
}


위 내용은 알고리즘 설계 및 분석을 위한 기반 더미의 예의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
고급 Java 프로젝트 관리, 구축 자동화 및 종속성 해상도에 Maven 또는 Gradle을 어떻게 사용합니까?고급 Java 프로젝트 관리, 구축 자동화 및 종속성 해상도에 Maven 또는 Gradle을 어떻게 사용합니까?Mar 17, 2025 pm 05:46 PM

이 기사에서는 Java 프로젝트 관리, 구축 자동화 및 종속성 해상도에 Maven 및 Gradle을 사용하여 접근 방식과 최적화 전략을 비교합니다.

적절한 버전 및 종속성 관리로 Custom Java 라이브러리 (JAR Files)를 작성하고 사용하려면 어떻게해야합니까?적절한 버전 및 종속성 관리로 Custom Java 라이브러리 (JAR Files)를 작성하고 사용하려면 어떻게해야합니까?Mar 17, 2025 pm 05:45 PM

이 기사에서는 Maven 및 Gradle과 같은 도구를 사용하여 적절한 버전 및 종속성 관리로 사용자 정의 Java 라이브러리 (JAR Files)를 작성하고 사용하는 것에 대해 설명합니다.

카페인 또는 구아바 캐시와 같은 라이브러리를 사용하여 자바 애플리케이션에서 다단계 캐싱을 구현하려면 어떻게해야합니까?카페인 또는 구아바 캐시와 같은 라이브러리를 사용하여 자바 애플리케이션에서 다단계 캐싱을 구현하려면 어떻게해야합니까?Mar 17, 2025 pm 05:44 PM

이 기사는 카페인 및 구아바 캐시를 사용하여 자바에서 다단계 캐싱을 구현하여 응용 프로그램 성능을 향상시키는 것에 대해 설명합니다. 구성 및 퇴거 정책 관리 Best Pra와 함께 설정, 통합 및 성능 이점을 다룹니다.

캐싱 및 게으른 하중과 같은 고급 기능을 사용하여 객체 관계 매핑에 JPA (Java Persistence API)를 어떻게 사용하려면 어떻게해야합니까?캐싱 및 게으른 하중과 같은 고급 기능을 사용하여 객체 관계 매핑에 JPA (Java Persistence API)를 어떻게 사용하려면 어떻게해야합니까?Mar 17, 2025 pm 05:43 PM

이 기사는 캐싱 및 게으른 하중과 같은 고급 기능을 사용하여 객체 관계 매핑에 JPA를 사용하는 것에 대해 설명합니다. 잠재적 인 함정을 강조하면서 성능을 최적화하기위한 설정, 엔티티 매핑 및 모범 사례를 다룹니다. [159 문자]

Java의 클래스로드 메커니즘은 다른 클래스 로더 및 대표 모델을 포함하여 어떻게 작동합니까?Java의 클래스로드 메커니즘은 다른 클래스 로더 및 대표 모델을 포함하여 어떻게 작동합니까?Mar 17, 2025 pm 05:35 PM

Java의 클래스 로딩에는 부트 스트랩, 확장 및 응용 프로그램 클래스 로더가있는 계층 적 시스템을 사용하여 클래스로드, 링크 및 초기화 클래스가 포함됩니다. 학부모 위임 모델은 핵심 클래스가 먼저로드되어 사용자 정의 클래스 LOA에 영향을 미치도록합니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
4 몇 주 전By尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

ZendStudio 13.5.1 맥

ZendStudio 13.5.1 맥

강력한 PHP 통합 개발 환경

SublimeText3 영어 버전

SublimeText3 영어 버전

권장 사항: Win 버전, 코드 프롬프트 지원!

DVWA

DVWA

DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

에디트플러스 중국어 크랙 버전

에디트플러스 중국어 크랙 버전

작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음