찾다
백엔드 개발파이썬 튜토리얼Matplotlib에 대한 첫 소개

Matplotlib에 대한 첫 소개

Jun 23, 2017 am 11:08 AM
matplotlib예비 탐사

Matplotlib의 초기 탐색

예제는 이 책에서 나왔습니다: "Python 프로그래밍에서 입문으로 실전 실습" [미국] Eric Matthes

그림을 그리는 데 pyplot을 사용하는 일반적인 가져오기 방법은 import matplotlib.pyplot as입니다. pltimport matplotlib.pyplot as plt

以下代码均在Jupyter Notebook中运行

折线图

先看一个简单的例子

import matplotlib.pyplot as plt

in_values = [1, 2 ,3, 4, 5]
squares = [1, 4, 9 ,16, 25]# 第一个参数是X轴输入,第二个参数是对应的Y轴输出;linewidth绘制线条的粗细plt.plot(in_values, squares, linewidth=4)# 标题、X轴、Y轴plt.title('Squares', fontsize=20)
plt.xlabel('Value', fontsize=12)
plt.ylabel('Square of the value', fontsize=12)# plt.tick_params(axis='both', labelsize=15)plt.show()

图如下,可以看到x轴太密了,甚至都有小数。

Matplotlib에 대한 첫 소개

如果想x轴只出现我们的样本值,可以使用tick_params函数修改刻度标记的大小。把上面代码中的倒数第二行取消注释,得到下面的图像。

Matplotlib에 대한 첫 소개

plt.tick_params(axis='both', labelsize=15),其中axis=both表示同时影响x、y轴的刻度,labelsize指定了刻度的字号,字号变大,同一长度下显示的坐标点数越少,反之亦反。由于将labelsize设置得比默认大了,故x、y轴显示的坐标点数变少。更符合这个例子。

散点图

还是上面的平方例子。这次使用散点图绘制。

in_values = [1, 2 ,3, 4, 5]
squares = [1, 4, 9 ,16, 25]# s参数为点的大小plt.scatter(in_values, squares, s=80)
plt.title('Squares', fontsize=20)
plt.xlabel('Value', fontsize=12)
plt.ylabel('Square of the value', fontsize=12)
plt.tick_params(axis='both', labelsize=15)
plt.show()

可以看到,只是将plt.plot换成了plt.scatter,其余的代码基本没变。

Matplotlib에 대한 첫 소개

若输入和输出的点比较多,可使用列表推导式。同时可以指定点的颜色及点的轮廓颜色。默认点的颜色为蓝色,轮廓为黑色。

x_values = list(range(1, 100))
y_values = [x**2 for x in x_values]# c参数指定点的颜色,轮廓的颜色不进行设置(none)plt.scatter(x_values, y_values, c='red', edgecolors='none' ,s=5)# x、y轴的坐标范围,注意提供一个列表,前两个是x轴的范围,后两个是y轴的范围plt.axis([0, 110, 0, 11000])
plt.show()

颜色的自定义还可以使用RGB的模式,传递一个元组给参数c。元组里面包含三个[0, 1]之间的数,分别代表(R, G, B),数字越靠近0颜色越淡,越靠近1颜色越深。比如c=(0, 0 , 0.6)表示的是一种浅蓝色。

依然是平方的图,人懒就不写标题了。

Matplotlib에 대한 첫 소개

颜色映射

颜色映射通常是一系列颜色的渐变。在可视化中,颜色映射可反应数据的规律,比如颜色浅的值比较小,颜色深的值比较大。

看一个很简单的例子,以y轴坐标值的大小映射。

x_values = list(range(1, 100))
y_values = [x**2 for x in x_values]# 颜色映射,按照y轴的值从浅到深,颜色采用蓝色plt.scatter(x_values, y_values, c=x_values, cmap=plt.cm.Blues, edgecolors='none' ,s=5)
plt.axis([0, 110, 0, 11000])# 取代show方法,保存图片到文件所在目录,bbox_inches='tight'可裁去多余的白边plt.savefig('squares_plot.png', bbox_inches='tight')

可以看到,y值小的点,颜色很浅,几乎看不到了;随着y值则增大,颜色越来越深。

Matplotlib에 대한 첫 소개

随机漫步模拟

先写一个随机漫步的类,目的是随机选择前进的方向

from random import choicedef get_step():"""    获得移动的步长    """# 分别代表正半轴和负半轴direction = choice([1, -1])# 随机选择一个距离distance = choice([0, 1, 2, 3, 4])
    step = direction * distancereturn stepclass RandomWalk:"""    一个生成随机漫步数据的类    """# 默认漫步5000步def __init__(self, num_points=5000):self.num_points = num_pointsself.x_values = [0]self.y_values = [0]def fill_walk(self):"""        计算随机漫步包含的所有点        """while len(self.x_values) < self.num_points:
            x_step = get_step()
            y_step = get_step()# 没有位移,跳过不取if x_step == 0 and y_step == 0:continue# 计算下一个点的x和y, 第一次为都0,以前的位置 + 刚才的位移 = 现在的位置next_x = self.x_values[-1] + x_step
            next_y = self.y_values[-1] + y_stepself.x_values.append(next_x)self.y_values.append(next_y)

开始绘制

import matplotlib.pyplot as plt


rw = RandomWalk()
rw.fill_walk()# figure的调用在plot或者scatter之前# plt.figure(dpi=300, figsize=(10, 6))# 这个列表包含了各点的漫步顺序,第一个元素将是漫步的起点,最后一个元素是漫步的终点point_numbers = list(range(rw.num_points))# 使用颜色映射绘制颜色深浅不同的点,浅色的是先漫步的,深色是后漫步的,因此可以反应漫步轨迹plt.scatter(rw.x_values, rw.y_values, c=point_numbers, cmap=plt.cm.Blues, s=1)# 突出起点plt.scatter(0, 0, c=&#39;green&#39;, edgecolors=&#39;none&#39;, s=50)# 突出终点plt.scatter(rw.x_values[-1], rw.y_values[-1], c=&#39;red&#39;, s=50)# 隐藏坐标轴plt.axes().get_xaxis().set_visible(False)
plt.axes().get_yaxis().set_visible(False)# 指定分辨率和图像大小,单位是英寸plt.show()

生成的图片,密密麻麻的点。远远看去还挺好看。绿色的是漫步起点,红色的是漫步的终点。

Matplotlib에 대한 첫 소개

但是图片有点不清晰,把rw.fill_walk()的下面一行注释取消。通常在绘图前调用。

plt.figure(dpi=300, figsize=(10, 6))dpi=300即是300像素/英寸,这个适当调高可获得清晰的图片。figsize=(10, 6)传入的参数是元组,表示绘图窗口的尺寸,也就是图片的尺寸了,单位英寸。

高清大图,爽不爽?

Matplotlib에 대한 첫 소개

处理CSV数据

我们也许需要分析别人提供的数据。一般是json和csv两种格式的文件。这里有个天气的数据sitka_weather_2014.csv

다음 코드는 모두 Jupyter Notebook에서 실행됩니다

Line Chart

먼저 간단한 예제를 살펴보겠습니다
import csv

filename = &#39;F:/Jupyter Notebook/matplotlib_pygal_csv_json/sitka_weather_2014.csv&#39;with open(filename) as f:
    reader = csv.reader(f)# 只调用了一次next,得到第一行表头header_row = next(reader)for index, column_header in enumerate(header_row):print(index, column_header)

그림은 다음과 같습니다. x축이 너무 조밀하고 심지어 소수까지 포함되어 있다는 것입니다.

Matplotlib에 대한 첫 소개

샘플 값만 표시하려는 경우 x축에서 사용할 수 있습니다. tick_params 함수는 눈금 표시의 크기를 수정합니다. 아래 이미지를 얻으려면 위 코드의 마지막 줄에서 두 번째 줄의 주석 처리를 제거하세요.

Matplotlib에 대한 첫 소개
plt.tick_params(axis='both', labelssize=15), 여기서 axis=both는 배율이 x축과 y축에 동시에 영향을 미친다는 의미입니다. labelsize는 배율의 글꼴 크기를 지정합니다. .글꼴 크기가 커지고 길이가 같아집니다. 아래에 표시되는 좌표 수가 적고 그 반대도 마찬가지입니다. labelsize가 기본값보다 크게 설정되므로 x축과 y축에 표시되는 좌표점의 수가 작아집니다. 이 예에 더 부합합니다. 🎜

산점도

🎜위의 사각형 예는 여전히 그렇습니다. 이번에는 산점도를 사용하여 플롯했습니다. 🎜🎜
0 AKST
1 Max TemperatureF
2 Mean TemperatureF
3 Min TemperatureF
4 Max Dew PointF
5 MeanDew PointF
6 Min DewpointF
7 Max Humidity
8  Mean Humidity
9  Min Humidity
...
🎜🎜보시다시피 plt.plotplt.scatter로 바꾸었고 나머지 코드는 기본적으로 변경되지 않았습니다. 🎜🎜Matplotlib에 대한 첫 소개🎜🎜입력 및 출력 지점이 많은 경우 목록을 사용할 수 있습니다. 파생 모드. 동시에 포인트 색상과 포인트 윤곽선 색상을 지정할 수 있습니다. 🎜기본 포인트 색상은 파란색이고 윤곽선은 검정색입니다. 🎜🎜🎜
import csvimport matplotlib.pyplot as pltfrom datetime import datetime

filename = &#39;F:/Jupyter Notebook/matplotlib_pygal_csv_json/sitka_weather_2014.csv&#39;with open(filename) as f:
    reader = csv.reader(f)# 只调用了一次next,得到第一行表头header_row = next(reader)# 第一列是最高气温,由于上面next读取过一行了,这里实际从第二行开始,也是数据开始的那行# reader只能读取一次,所以如下写法dates为空#     highs = [int(row[1]) for row in reader]#     dates= [row[0] for row in reader]dates, highs, lows = [], [], []for row in reader:# 捕获异常,防止出现数据为空的情况try:
            date = datetime.strptime(row[0], &#39;%Y-%m-%d&#39;)# 第1列最高气温,读取到是字符串,转为inthigh = int(row[1])# 第3列最低气温low = int(row[3])except ValueError:print(date, &#39;missing data&#39;)else:
            dates.append(date)
            highs.append(high)
            lows.append(low)# figure在plot之前调用fig = plt.figure(dpi=300, figsize=(10, 6))# 最高气温的折线图plt.plot(dates, highs, c=&#39;red&#39;)# 最低气温的折线图plt.plot(dates, lows, c=&#39;blue&#39;)# 在两个y值之间填充颜色,facecolor为填充的颜色,alpha参数可指定颜色透明度,0.1表示颜色很浅接近透明plt.fill_between(dates, highs, lows, facecolor=&#39;blue&#39;, alpha=0.1)
plt.title(&#39;Daily high and low temperatures - 2014&#39;, fontsize=20)
plt.xlabel(&#39;&#39;, fontsize=16)
plt.ylabel(&#39;Temperature(F)&#39;, fontsize=16)# x轴的日期调整为斜着显示fig.autofmt_xdate()
plt.tick_params(axis=&#39;both&#39;,labelsize=15)
plt.show()
🎜🎜 색상 사용자 정의에서는 RGB 모드를 사용하고 매개변수 c에 튜플을 전달할 수도 있습니다. 튜플에는 각각 (R, G, B)를 나타내는 [0, 1] 사이의 세 숫자가 포함되어 있으며 숫자가 0에 가까울수록 색상이 밝아지고 숫자가 1에 가까울수록 색상이 어두워집니다. 예를 들어 c=(0, 0, 0.6)은 연한 파란색을 나타냅니다. 🎜🎜아직 정사각형 사진이라 제목 쓰기가 너무 귀찮네요. 🎜🎜Matplotlib에 대한 첫 소개🎜

색상 매핑

🎜색상 매핑은 일반적으로 색상의 그라데이션입니다. 시각화에서는 색상 매핑이 데이터의 패턴을 반영할 수 있습니다. 예를 들어 밝은 색상은 값이 작고, 어두운 색상은 값이 큽니다. 🎜🎜y축 좌표값의 크기를 기준으로 매핑하는 아주 간단한 예를 살펴보세요. 🎜🎜
# 下面这句报错time data &#39;2017/6/23&#39; does not match format &#39;%Y-%m-%d&#39;print(datetime.strptime(&#39;2017/6/22&#39;, &#39;%Y-%m-%d&#39;)) 
print(datetime.strptime(&#39;2017-6-22&#39;, &#39;%Y-%m-%d&#39;))
🎜🎜 y 값이 작은 점의 색상이 매우 밝고 거의 눈에 띄지 않는 것을 볼 수 있습니다. y 값이 증가할수록 색상이 점점 어두워집니다. 🎜🎜Matplotlib에 대한 첫 소개🎜

랜덤 워크 시뮬레이션

🎜먼저 작성해 주세요 무작위 걷기 수업의 목적은 이동 방향 🎜🎜rrreee🎜🎜을 무작위로 선택하고 🎜🎜rrreee🎜🎜이 생성한 그림을 점으로 촘촘하게 그리는 것입니다. 멀리서 보면 꽤 괜찮아 보입니다. 녹색이 산책의 시작점이고 빨간색이 산책의 끝점입니다. 🎜🎜Matplotlib에 대한 첫 소개🎜🎜근데 사진이 좀 불분명하니 rw를 넣어주세요 .fill_walk 아래 줄()의 주석 처리를 제거하세요. 보통 그리기 전에 호출됩니다. 🎜🎜plt.Figure(dpi=300, figsize=(10, 6)), dpi=300은 300픽셀/인치입니다. 선명도를 얻기 위해 적절하게 늘릴 수 있습니다. 영화. figsize=(10, 6)전달된 매개변수는 그림의 크기인 그리기 창의 크기를 인치 단위로 나타내는 튜플입니다. 🎜🎜고화질 사진, 마음에 드시나요? 🎜🎜Matplotlib에 대한 첫 소개🎜

CSV 데이터 처리

🎜필요할 수 있음 다른 사람이 제공한 데이터를 분석합니다. 일반적으로 json과 csv라는 두 가지 형식의 파일입니다. 2014년 미국 시트카의 날씨 데이터인 sitka_weather_2014.csv입니다. 여기에서는 Matplotlib을 사용하여 csv 파일을 처리하고 json 파일 처리는 pygal에 배치됩니다. 🎜🎜sitka_weather_2014.csv 데이터 다운로드🎜🎜csv 파일의 첫 번째 줄은 일반적으로 테이블 헤더이고 실제 데이터는 두 번째 줄부터 시작됩니다. 먼저 테이블 헤더에 어떤 데이터가 포함되어 있는지 살펴보겠습니다. 🎜🎜rrreee🎜🎜다음을 인쇄하세요 🎜rrreee🎜최대 온도와 최저 온도에 관심이 있고 🎜열 1과 열 3🎜의 데이터만 가져오면 됩니다. 또한 날짜 데이터는 열 1에 있습니다. 🎜🎜다음 단계는 어렵지 않습니다. 두 번째 줄부터 시작하여 최고 기온을 최고 기온 목록에, 최저 기온을 최저 기온 목록에, 날짜를 날짜 목록에 입력하고 x축에 날짜를 표시하고 datetime 모듈을 도입하려고 합니다. 🎜🎜rreee🎜

Matplotlib에 대한 첫 소개

看以看出,7月到9月都很热,但是5月出现过非常高的气温!

上面的代码有一行date = datetime.strptime(row[0], '%Y-%m-%d')。注意%Y-%m-%d要和row[0]字符串的格式一致。举个例子

# 下面这句报错time data &#39;2017/6/23&#39; does not match format &#39;%Y-%m-%d&#39;print(datetime.strptime(&#39;2017/6/22&#39;, &#39;%Y-%m-%d&#39;)) 
print(datetime.strptime(&#39;2017-6-22&#39;, &#39;%Y-%m-%d&#39;))

%Y指的是四位的年份, %y是两位年份,%m是数字表示的月份,%d数字表示的月份中的一天。


by @sunhaiyu

2017.6.22

위 내용은 Matplotlib에 대한 첫 소개의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
2 시간의 파이썬 계획 : 현실적인 접근2 시간의 파이썬 계획 : 현실적인 접근Apr 11, 2025 am 12:04 AM

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

파이썬 : 기본 응용 프로그램 탐색파이썬 : 기본 응용 프로그램 탐색Apr 10, 2025 am 09:41 AM

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 ​​같은 작업에 적합합니다.

2 시간 안에 얼마나 많은 파이썬을 배울 수 있습니까?2 시간 안에 얼마나 많은 파이썬을 배울 수 있습니까?Apr 09, 2025 pm 04:33 PM

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

10 시간 이내에 프로젝트 및 문제 중심 방법에서 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법?10 시간 이내에 프로젝트 및 문제 중심 방법에서 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법?Apr 02, 2025 am 07:18 AM

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?

중간 독서를 위해 Fiddler를 사용할 때 브라우저에서 감지되는 것을 피하는 방법은 무엇입니까?중간 독서를 위해 Fiddler를 사용할 때 브라우저에서 감지되는 것을 피하는 방법은 무엇입니까?Apr 02, 2025 am 07:15 AM

Fiddlerevery Where를 사용할 때 Man-in-the-Middle Reading에 Fiddlereverywhere를 사용할 때 감지되는 방법 ...

Python 3.6에 피클 파일을로드 할 때 '__builtin__'모듈을 찾을 수없는 경우 어떻게해야합니까?Python 3.6에 피클 파일을로드 할 때 '__builtin__'모듈을 찾을 수없는 경우 어떻게해야합니까?Apr 02, 2025 am 07:12 AM

Python 3.6에 피클 파일로드 3.6 환경 보고서 오류 : modulenotfounderror : nomodulename ...

경치 좋은 스팟 코멘트 분석에서 Jieba Word 세분화의 정확성을 향상시키는 방법은 무엇입니까?경치 좋은 스팟 코멘트 분석에서 Jieba Word 세분화의 정확성을 향상시키는 방법은 무엇입니까?Apr 02, 2025 am 07:09 AM

경치 좋은 스팟 댓글 분석에서 Jieba Word 세분화 문제를 해결하는 방법은 무엇입니까? 경치가 좋은 스팟 댓글 및 분석을 수행 할 때 종종 Jieba Word 세분화 도구를 사용하여 텍스트를 처리합니다 ...

정규 표현식을 사용하여 첫 번째 닫힌 태그와 정지와 일치하는 방법은 무엇입니까?정규 표현식을 사용하여 첫 번째 닫힌 태그와 정지와 일치하는 방법은 무엇입니까?Apr 02, 2025 am 07:06 AM

정규 표현식을 사용하여 첫 번째 닫힌 태그와 정지와 일치하는 방법은 무엇입니까? HTML 또는 기타 마크 업 언어를 다룰 때는 정규 표현식이 종종 필요합니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

PhpStorm 맥 버전

PhpStorm 맥 버전

최신(2018.2.1) 전문 PHP 통합 개발 도구

ZendStudio 13.5.1 맥

ZendStudio 13.5.1 맥

강력한 PHP 통합 개발 환경

Atom Editor Mac 버전 다운로드

Atom Editor Mac 버전 다운로드

가장 인기 있는 오픈 소스 편집기

SecList

SecList

SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

WebStorm Mac 버전

WebStorm Mac 버전

유용한 JavaScript 개발 도구