这篇文章主要介绍了Python正则表达式中贪婪/非贪婪特性的相关资料,文中通过示例代码介绍的很详细,对大家具有一定的参考价值,需要的朋友下面来一起看看吧。
之前已经简单介绍了Python正则表达式的基础与捕获,那么在这一篇文章里,我将总结一下正则表达式的贪婪/非贪婪特性。
贪婪
默认情况下,正则表达式将进行贪婪匹配。所谓“贪婪”,其实就是在多种长度的匹配字符串中,选择较长的那一个。例如,如下正则表达式本意是选出人物所说的话,但是却由于“贪婪”特性,出现了匹配不当:
>>> sentence = """You said "why?" and I say "I don't know".""" >>> re.findall(r'"(.*)"', sentence) ['why?" and I say "I don\'t know']
再比如,如下的几个例子都说明了正则表达式“贪婪”的特性:
>>> re.findall('hi*', 'hiiiii') ['hiiiii'] >>> re.findall('hi{2,}', 'hiiiii') ['hiiiii'] >>> re.findall('hi{1,3}', 'hiiiii') ['hiii']
非贪婪
当我们期望正则表达式“非贪婪”地进行匹配时,需要通过语法明确说明:
{2,5}?
捕获2-5次,但是优先次数少的匹配
在这里,问号?可能会有些让人犯晕,因为之前他已经有了自己的含义:前面的匹配出现0次或1次。其实,只要记住,当问号出现在表现不定次数的正则表达式部分之后时,就表示非贪婪匹配。
还是上面的那几个例子,用非贪婪匹配,则结果如下:
>>> re.findall('hi*?', 'hiiiii') ['h'] >>> re.findall('hi{2,}?', 'hiiiii') ['hii'] >>> re.findall('hi{1,3}?', 'hiiiii') ['hi']
另外一个例子中,使用非贪婪匹配,结果如下:
>>> sentence = """You said "why?" and I say "I don't know".""" >>> re.findall(r'"(.*?)"', sentence) ['why?', "I don't know"]
捕获与非贪婪
严格来说,这一部分并不是非贪婪特性。但是由于其行为与非贪婪类似,所以为了方便记忆,就将其放在一起了。
(?=abc)
捕获,但不消耗字符,且匹配abc
(?!abc)
捕获,不消耗,且不匹配abc
在正则表达式匹配的过程中,其实存在“消耗字符”的过程,也就是说,一旦一个字符在匹配过程中被检索(消耗)过,后面的匹配就不会再检索这一字符了。
知道这个特性有什么用呢?还是用例子说明。比如,我们想找出字符串中出现过1次以上的单词:
>>> sentence = "Oh what a day, what a lovely day!" >>> re.findall(r'\b(\w+)\b.*\b\1\b', sentence) ['what']
这样的正则表达式显然无法完成任务。为什么呢?原因就是,在第一个(\w+)匹配到what,并且其后的\1也匹配到第二个what的时候,“Oh what a day, what”这一段子串都已经被正则表达式消耗了,所以之后的匹配,将直接从第二个what之后开始。自然地,这里只能找出一个出现了两次的单词。
那么解决方案,就和上面提到的(?=abc)语法相关了。这样的语法可以在分组匹配的同时,不消耗字符串!所以,正确的书写方式应该是:
>>> re.findall(r'\b(\w+)\b(?=.*\b\1\b)', sentence) ['what', 'a', 'day']
如果我们需要匹配一个至少包含两个不同字母的单词,则可以使用(?!abc)的语法:
>>> re.search(r'([a-z]).*(?!\1)[a-z]', 'aa', re.IGNORECASE) >>> re.search(r'([a-z]).*(?!\1)[a-z]', 'ab', re.IGNORECASE) <_sre.SRE_Match object; span=(0, 2), match='ab'>
【相关推荐】
1. Python免费视频教程
2. Python学习手册
위 내용은 Python의 일반적인 탐욕적 특성과 비탐욕적 특성에 대한 자세한 설명의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Arraysinpython, 특히 비밀 복구를위한 ArecrucialInscientificcomputing.1) theaRearedFornumericalOperations, DataAnalysis 및 MachinELearning.2) Numpy'SimplementationIncensuressuressurations thanpythonlists.3) arraysenablequick

Pyenv, Venv 및 Anaconda를 사용하여 다양한 Python 버전을 관리 할 수 있습니다. 1) PYENV를 사용하여 여러 Python 버전을 관리합니다. Pyenv를 설치하고 글로벌 및 로컬 버전을 설정하십시오. 2) VENV를 사용하여 프로젝트 종속성을 분리하기 위해 가상 환경을 만듭니다. 3) Anaconda를 사용하여 데이터 과학 프로젝트에서 Python 버전을 관리하십시오. 4) 시스템 수준의 작업을 위해 시스템 파이썬을 유지하십시오. 이러한 도구와 전략을 통해 다양한 버전의 Python을 효과적으로 관리하여 프로젝트의 원활한 실행을 보장 할 수 있습니다.

Numpyarrayshaveseveraladvantagesstandardpythonarrays : 1) thearemuchfasterduetoc 기반 간증, 2) thearemorememory-refficient, 특히 withlargedatasets 및 3) wepferoptizedformationsformationstaticaloperations, 만들기, 만들기

어레이의 균질성이 성능에 미치는 영향은 이중입니다. 1) 균질성은 컴파일러가 메모리 액세스를 최적화하고 성능을 향상시킬 수 있습니다. 2) 그러나 유형 다양성을 제한하여 비 효율성으로 이어질 수 있습니다. 요컨대, 올바른 데이터 구조를 선택하는 것이 중요합니다.

tocraftexecutablepythonscripts, 다음과 같은 비스트 프랙티스를 따르십시오 : 1) 1) addashebangline (#!/usr/bin/envpython3) tomakethescriptexecutable.2) setpermissionswithchmod xyour_script.py.3) organtionewithlarstringanduseifname == "__"

numpyarraysarebetterfornumericaloperations 및 multi-dimensionaldata, mumemer-efficientArrays

numpyarraysarebetterforheavynumericalcomputing, whilearraymoduleisiMoresuily-sportainedprojectswithsimpledatatypes.1) numpyarraysofferversatively 및 formanceforgedatasets 및 complexoperations.2) Thearraymoduleisweighit 및 ep

ctypesallowscreatingandmanipulatingC-stylearraysinPython.1)UsectypestointerfacewithClibrariesforperformance.2)CreateC-stylearraysfornumericalcomputations.3)PassarraystoCfunctionsforefficientoperations.However,becautiousofmemorymanagement,performanceo


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

WebStorm Mac 버전
유용한 JavaScript 개발 도구

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.
