찾다
백엔드 개발파이썬 튜토리얼Python의 가비지 수집 메커니즘에 대한 자세한 설명

1. 가비지 수집 메커니즘
Python의 가비지 수집은 주로 참조 카운팅을 기반으로 하며 세대별 수집으로 보완됩니다. 참조 카운팅의 단점은 순환 참조 문제입니다.
Python에서 개체에 대한 참조 수가 0이면 Python 가상 머신은 이 개체의 메모리를 회수합니다.

#encoding=utf-8
__author__ = 'kevinlu1010@qq.com'
 
class ClassA():
  def __init__(self):
    print 'object born,id:%s'%str(hex(id(self)))
  def __del__(self):
    print 'object del,id:%s'%str(hex(id(self)))
 
def f1():
  while True:
    c1=ClassA()
    del c1


f1()을 실행하면 이러한 결과가 루프로 출력되며 프로세스가 차지하는 메모리는 기본적으로 변경되지 않습니다.

object born,id:0x237cf58
object del,id:0x237cf58


c1=ClassA()는 0x237cf58 메모리에 배치된 c1 변수는 이 메모리의 참조 횟수가 1입니다.
del c1 이후에는 c1 변수가 더 이상 0x237cf58 메모리를 가리키지 않으므로 참조는 이 메모리의 개수는 1씩 감소하여 0이 됩니다. 따라서 개체가 파괴되고 메모리가 해제됩니다.
참조 카운트가 +1이 되는 상황
객체가 생성됩니다(예: a=23)
객체가 참조됩니다.예: b=a
객체가 매개변수로 전달됩니다. func( a)와 같은 함수
개체는 컨테이너에 요소로 저장됩니다(예: list1=[a,a]
참조 횟수가 -1이 됨). 객체는 명시적으로 삭제됩니다(예: del a
객체의 별칭은 a=24
와 같이 새 객체에 할당됨
예를 들어 f 함수가 실행을 완료하면 객체가 해당 범위를 벗어남). func 함수의 변수(전역 변수는 그렇지 않음)
객체가 위치한 컨테이너가 파괴되거나 객체가 컨테이너에서 삭제됩니다.
demo

def func(c,d):
  print 'in func function', sys.getrefcount(c) - 1
 
 
print 'init', sys.getrefcount(11) - 1
a = 11
print 'after a=11', sys.getrefcount(11) - 1
b = a
print 'after b=1', sys.getrefcount(11) - 1
func(11)
print 'after func(a)', sys.getrefcount(11) - 1
list1 = [a, 12, 14]
print 'after list1=[a,12,14]', sys.getrefcount(11) - 1
a=12
print 'after a=12', sys.getrefcount(11) - 1
del a
print 'after del a', sys.getrefcount(11) - 1
del b
print 'after del b', sys.getrefcount(11) - 1
# list1.pop(0)
# print 'after pop list1',sys.getrefcount(11)-1
del list1
print 'after del list1', sys.getrefcount(11) - 1


출력:

init 24
after a=11 25
after b=1 26
in func function 28
after func(a) 26
after list1=[a,12,14] 27
after a=12 26
after del a 26
after del b 25
after del list1 24


질문: 함수를 호출하면 참조 카운트가 2만큼 증가하는 이유
객체의 참조 카운트 보기
sys.getrefcount(a)는 객체의 참조 카운트를 확인할 수 있지만, 함수를 호출할 때 a가 전달되어 a의 참조 카운트가 1씩 증가하기 때문에 일반 카운트보다 1이 큽니다.
2. 순환 참조로 인해 메모리 누수가 발생합니다

def f2():
  while True:
    c1=ClassA()
    c2=ClassA()
    c1.t=c2
    c2.t=c1
    del c1
    del c2


f2()가 실행되면 프로세스가 차지하는 메모리는 계속 증가합니다.

object born,id:0x237cf30
object born,id:0x237cf58


c1과 c2를 생성한 후 이 두 메모리의 참조 횟수는 0x237cf30(c1에 해당하는 메모리, 메모리 1로 기록됨), 0x237cf58(c2에 해당하는 메모리, 메모리 2로 기록됨)입니다. ).은 1입니다. c1.t=c2 및 c2.t=c1을 실행한 후 이 두 메모리의 참조 횟수는 2가 됩니다.
del c1 이후에는 메모리 1에 있는 개체의 참조 횟수가 1이 됩니다. 0이 아니기 때문에 메모리 1의 객체는 소멸되지 않으므로 메모리 2의 객체에 대한 참조 수는 여전히 2입니다. del c2 이후에도 같은 방식으로 메모리의 객체에 대한 참조 수는 1이고 메모리 2의 개체는 1입니다.
순환 참조로 인해 두 객체가 모두 파괴될 수 있지만 가비지 수집기는 객체를 재활용하지 않으므로 메모리 누수가 발생합니다.
3. 가비지 수집

deff3():
  # print gc.collect()
  c1=ClassA()
  c2=ClassA()
  c1.t=c2
  c2.t=c1
  del c1
  del c2
  print gc.garbage
  print gc.collect() #显式执行垃圾回收
  print gc.garbage
  time.sleep(10)
if __name__ == '__main__':
  gc.set_debug(gc.DEBUG_LEAK) #设置gc模块的日志
  f3()


출력:
Python

gc: uncollectable <classa>
gc: uncollectable <classa>
gc: uncollectable <dict>
gc: uncollectable <dict>
object born,id:0x230e918
object born,id:0x230e940</dict></dict></classa></classa>


4
가비지 수집 후 개체는 다음과 같습니다. gc.garbage 목록에 배치
gc.collect()는 연결할 수 없는 개체 수를 반환합니다. 4는 두 개체 및 해당 dict와 같습니다
가비지 수집을 트리거하는 세 가지 상황이 있습니다:
1 .gc .collect()를 호출하세요.
2.gc 모듈의 카운터가 임계값에 도달하면.
3. 프로그램 종료 시
4. gc 모듈의 공통 기능 분석

Garbage Collector interface


gc 모듈은 개발자가 가비지 컬렉션을 설정할 수 있는 인터페이스를 제공합니다. 옵션. 위에서 언급한 바와 같이 참조 카운팅 방식을 사용하여 메모리를 관리할 때 나타나는 결점 중 하나가 순환 참조이며, gc 모듈의 주요 기능 중 하나는 순환 참조 문제를 해결하는 것입니다.
일반적으로 사용되는 함수:
gc.set_debug(flags)
gc의 디버그 로그를 설정합니다. 일반적으로 gc.DEBUG_LEAK로 설정됩니다.
gc.collect([세대])
명시적 가비지 수집, 매개변수를 입력할 수 있으며, 0은 1세대 개체만 확인한다는 의미이고, 1은 1세대와 2세대 개체를 확인한다는 의미이며, 2는 매개변수가 전달되지 않은 경우 1세대, 2세대, 3세대 개체를 확인한다는 의미입니다. , 전체 컬렉션이 실행되며 이는 2 를 전달하는 것과 동일합니다.
도달할 수 없는 개체 수를 반환합니다
gc.set_threshold(threshold0[, Threshold1[, Threshold2])
자동 가비지 수집 빈도를 설정합니다.
gc.get_count()
현재 자동 가비지 수집 카운터를 가져오고 길이 3의 목록을 반환합니다.
gc 모듈의 자동 가비지 수집 메커니즘
gc 모듈을 가져와야 하며 is_enable()입니다. =True는 자동 가비지 수집을 시작합니다.
이 메커니즘의 주요 기능은 도달할 수 없는 쓰레기 객체를 발견하고 처리하는 것입니다.
가비지 컬렉션 = 가비지 체크 + 가비지 컬렉션
파이썬에서는 세대별 컬렉션 방식을 사용합니다. 객체를 3세대로 나누면 처음에 객체가 생성되면 1세대에 배치되고, 변경된 객체가 1세대의 가비지 체크를 통과하면 2세대에 배치됩니다. 세대 가비지 검사, 객체가 가비지 검사에서 살아남으면 3세대에 배치됩니다.
gc 모듈에는 gc.get_count()를 통해 얻을 수 있는 길이가 3인 카운터가 있습니다.
예를 들어 (488,3,0)에서 488은 Python에서 할당한 메모리 수에서 마지막 세대 가비지 검사 이후 해제된 메모리 수를 뺀 값입니다. 참조 증가가 아니라 메모리 할당이라는 점에 유의하세요. 세다. 예:

print gc.get_count() # (590, 8, 0)
a = ClassA()
print gc.get_count() # (591, 8, 0)
del a
print gc.get_count() # (590, 8, 0)


3是指距离上一次二代垃圾检查,一代垃圾检查的次数,同理,0是指距离上一次三代垃圾检查,二代垃圾检查的次数。
gc模快有一个自动垃圾回收的阀值,即通过gc.get_threshold函数获取到的长度为3的元组,例如(700,10,10)
每一次计数器的增加,gc模块就会检查增加后的计数是否达到阀值的数目,如果是,就会执行对应的代数的垃圾检查,然后重置计数器
例如,假设阀值是(700,10,10):
当计数器从(699,3,0)增加到(700,3,0),gc模块就会执行gc.collect(0),即检查一代对象的垃圾,并重置计数器为(0,4,0)
当计数器从(699,9,0)增加到(700,9,0),gc模块就会执行gc.collect(1),即检查一、二代对象的垃圾,并重置计数器为(0,0,1)
当计数器从(699,9,9)增加到(700,9,9),gc模块就会执行gc.collect(2),即检查一、二、三代对象的垃圾,并重置计数器为(0,0,0)
其他
如果循环引用中,两个对象都定义了__del__方法,gc模块不会销毁这些不可达对象,因为gc模块不知道应该先调用哪个对象的__del__方法,所以为了安全起见,gc模块会把对象放到gc.garbage中,但是不会销毁对象。
五.应用
 项目中避免循环引用
 引入gc模块,启动gc模块的自动清理循环引用的对象机制
 由于分代收集,所以把需要长期使用的变量集中管理,并尽快移到二代以后,减少GC检查时的消耗
 gc模块唯一处理不了的是循环引用的类都有__del__方法,所以项目中要避免定义__del__方法,如果一定要使用该方法,同时导致了循环引用,需要代码显式调用gc.garbage里面的对象的__del__来打破僵局

위 내용은 Python의 가비지 수집 메커니즘에 대한 자세한 설명의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
Python vs. C : 주요 차이점 이해Python vs. C : 주요 차이점 이해Apr 21, 2025 am 12:18 AM

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Python vs. C : 프로젝트를 위해 어떤 언어를 선택해야합니까?Python vs. C : 프로젝트를 위해 어떤 언어를 선택해야합니까?Apr 21, 2025 am 12:17 AM

Python 또는 C를 선택하는 것은 프로젝트 요구 사항에 따라 다릅니다. 1) 빠른 개발, 데이터 처리 및 프로토 타입 설계가 필요한 경우 Python을 선택하십시오. 2) 고성능, 낮은 대기 시간 및 근접 하드웨어 제어가 필요한 경우 C를 선택하십시오.

파이썬 목표에 도달 : 매일 2 시간의 힘파이썬 목표에 도달 : 매일 2 시간의 힘Apr 20, 2025 am 12:21 AM

매일 2 시간의 파이썬 학습을 투자하면 프로그래밍 기술을 효과적으로 향상시킬 수 있습니다. 1. 새로운 지식 배우기 : 문서를 읽거나 자습서를 시청하십시오. 2. 연습 : 코드를 작성하고 완전한 연습을합니다. 3. 검토 : 배운 내용을 통합하십시오. 4. 프로젝트 실무 : 실제 프로젝트에서 배운 것을 적용하십시오. 이러한 구조화 된 학습 계획은 파이썬을 체계적으로 마스터하고 경력 목표를 달성하는 데 도움이 될 수 있습니다.

2 시간 극대화 : 효과적인 파이썬 학습 전략2 시간 극대화 : 효과적인 파이썬 학습 전략Apr 20, 2025 am 12:20 AM

2 시간 이내에 Python을 효율적으로 학습하는 방법 : 1. 기본 지식을 검토하고 Python 설치 및 기본 구문에 익숙한 지 확인하십시오. 2. 변수, 목록, 기능 등과 같은 파이썬의 핵심 개념을 이해합니다. 3. 예제를 사용하여 마스터 기본 및 고급 사용; 4. 일반적인 오류 및 디버깅 기술을 배우십시오. 5. 목록 이해력 사용 및 PEP8 스타일 안내서와 같은 성능 최적화 및 모범 사례를 적용합니다.

Python과 C : The Hight Language 중에서 선택Python과 C : The Hight Language 중에서 선택Apr 20, 2025 am 12:20 AM

Python은 초보자 및 데이터 과학에 적합하며 C는 시스템 프로그래밍 및 게임 개발에 적합합니다. 1. 파이썬은 간단하고 사용하기 쉽고 데이터 과학 및 웹 개발에 적합합니다. 2.C는 게임 개발 및 시스템 프로그래밍에 적합한 고성능 및 제어를 제공합니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

Python vs. C : 프로그래밍 언어의 비교 분석Python vs. C : 프로그래밍 언어의 비교 분석Apr 20, 2025 am 12:14 AM

Python은 데이터 과학 및 빠른 개발에 더 적합한 반면 C는 고성능 및 시스템 프로그래밍에 더 적합합니다. 1. Python Syntax는 간결하고 학습하기 쉽고 데이터 처리 및 과학 컴퓨팅에 적합합니다. 2.C는 복잡한 구문을 가지고 있지만 성능이 뛰어나고 게임 개발 및 시스템 프로그래밍에 종종 사용됩니다.

하루 2 시간 : 파이썬 학습의 잠재력하루 2 시간 : 파이썬 학습의 잠재력Apr 20, 2025 am 12:14 AM

파이썬을 배우기 위해 하루에 2 시간을 투자하는 것이 가능합니다. 1. 새로운 지식 배우기 : 목록 및 사전과 같은 1 시간 안에 새로운 개념을 배우십시오. 2. 연습 및 연습 : 1 시간을 사용하여 소규모 프로그램 작성과 같은 프로그래밍 연습을 수행하십시오. 합리적인 계획과 인내를 통해 짧은 시간에 Python의 핵심 개념을 마스터 할 수 있습니다.

Python vs. C : 학습 곡선 및 사용 편의성Python vs. C : 학습 곡선 및 사용 편의성Apr 19, 2025 am 12:20 AM

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

VSCode Windows 64비트 다운로드

VSCode Windows 64비트 다운로드

Microsoft에서 출시한 강력한 무료 IDE 편집기

ZendStudio 13.5.1 맥

ZendStudio 13.5.1 맥

강력한 PHP 통합 개발 환경

맨티스BT

맨티스BT

Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.