소개
Python표준 라이브러리는 해당 멀티스레딩/멀티프로세스 코드를 작성할 수 있는 스레딩 및 멀티프로세싱 모듈을 제공하지만 프로젝트가 일정한 규모, 빈번한 프로세스나 스레드 생성/파괴는 많은 리소스를 소비합니다. 이때 공간을 시간과 교환하기 위해 자체 스레드 풀/프로세스 풀을 작성해야 합니다. 그러나 Python3.2부터 표준 라이브러리는 concurrent.futures 모듈을 제공합니다. 이 모듈은 ThreadPoolExecutor와 ProcessPoolExecutor라는 두 클래스를 제공합니다. 스레딩 및 다중 처리의 추가 추상화는 스레드 풀/프로세스 풀 작성을 직접 지원합니다.
Executor와 Future
concurrent.futures 모듈은 Executor를 기반으로 합니다. Executor는 직접 사용할 수 없는 추상 클래스입니다. 그러나 이 클래스가 제공하는 두 하위 클래스 ThreadPoolExecutor 및 ProcessPoolExecutor는 이름에서 알 수 있듯이 각각 스레드 풀 및 프로세스 풀 코드를 생성하는 데 사용됩니다. 해당 작업을 스레드 풀/프로세스 풀에 직접 넣을 수 있으며, 교착 상태를 걱정하기 위해 대기열을 유지할 필요가 없습니다. 스레드 풀/프로세스 풀이 자동으로 이를 예약합니다.
Future java, nodejs 프로그래밍 경험이 있는 친구들은 이 개념을 확실히 알 수 있을 거라 믿습니다. 사용 미래에 완료되는 작업으로 이해 이는 비동기 프로그래밍의 기본입니다. 예를 들어 queue.get을 작업하면 결과가 반환되기를 기다리기 전에 차단이 발생하며, CPU는 다른 작업을 수행하기 위해 해제될 수 없습니다. Future를 도입하면 기다리는 동안 다른 작업을 완료하는 데 도움이 됩니다. Python의 비동기 IO에 대해서는 이 기사를 읽은 후 내 Python 동시 프로그래밍 코루틴/비동기 IO를 참조할 수 있습니다.
p.s: 여전히 Python2.x를 사용하고 있다면 먼저 futures 모듈을 설치하세요.
pip install futuressubmit을 사용하여 스레드 풀/프로세스 풀 운영먼저 다음 코드를 통해 스레드 풀의 개념을 이해해 봅시다
# example1.py from concurrent.futures import ThreadPoolExecutor import time def return_future_result(message): time.sleep(2) return message pool = ThreadPoolExecutor(max_workers=2) # 创建一个最大可容纳2个task的线程池 future1 = pool.submit(return_future_result, ("hello")) # 往线程池里面加入一个task future2 = pool.submit(return_future_result, ("world")) # 往线程池里面加入一个task print(future1.done()) # 判断task1是否结束 time.sleep(3) print(future2.done()) # 判断task2是否结束 print(future1.result()) # 查看task1返回的结果 print(future2.result()) # 查看task2返回的结果다음 코드를 사용하겠습니다. 스레드 풀의 개념을 이해하기 위해 분석해 보겠습니다. 스레드 풀에 작업을 추가하기 위해
submit 메소드를 사용합니다. submit은 Future 객체 를 반환합니다. 미래. 첫 번째 print 문에서는 메인 스레드를 일시 중지하기 위해 time.sleep(3)을 사용했기 때문에 time.sleep(2) 때문에 future1이 완료되지 않았음이 분명합니다. 따라서 두 번째 print 문에 관해서는 다음과 같습니다. 스레드 풀 여기의 모든 작업이 완료되었습니다.
ziwenxie :: ~ » python example1.py False True hello world # 在上述程序执行的过程中,通过ps命令我们可以看到三个线程同时在后台运行 ziwenxie :: ~ » ps -eLf | grep python ziwenxie 8361 7557 8361 3 3 19:45 pts/0 00:00:00 python example1.py ziwenxie 8361 7557 8362 0 3 19:45 pts/0 00:00:00 python example1.py ziwenxie 8361 7557 8363 0 3 19:45 pts/0 00:00:00 python example1.py위 코드를 프로세스 풀 형식으로 다시 작성할 수도 있습니다.
api는 스레드 풀과 완전히 동일하므로 장황하게 설명하지 않겠습니다.
# example2.py from concurrent.futures import ProcessPoolExecutor import time def return_future_result(message): time.sleep(2) return message pool = ProcessPoolExecutor(max_workers=2) future1 = pool.submit(return_future_result, ("hello")) future2 = pool.submit(return_future_result, ("world")) print(future1.done()) time.sleep(3) print(future2.done()) print(future1.result()) print(future2.result())실행 결과는 다음과 같습니다
ziwenxie :: ~ » python example2.py False True hello world ziwenxie :: ~ » ps -eLf | grep python ziwenxie 8560 7557 8560 3 3 19:53 pts/0 00:00:00 python example2.py ziwenxie 8560 7557 8563 0 3 19:53 pts/0 00:00:00 python example2.py ziwenxie 8560 7557 8564 0 3 19:53 pts/0 00:00:00 python example2.py ziwenxie 8561 8560 8561 0 1 19:53 pts/0 00:00:00 python example2.py ziwenxie 8562 8560 8562 0 1 19:53 pts/0 00:00:00 python example2.py
map/wait를 사용하여 스레드 풀/프로세스 풀을 조작합니다
submit 외에 Executor 또한 지도 방법은 내장된 지도 사용법과 유사합니다. 두 가지 예를 통해 두 가지의 차이점을 비교해 보겠습니다. submit 작업 사용 검토# example3.py
import concurrent.futures
import urllib.request
URLS = ['http://httpbin.org', 'http://example.com/', 'https://api.github.com/']
def load_url(url, timeout):
with urllib.request.urlopen(url, timeout=timeout) as conn:
return conn.read()
# We can use a with statement to ensure threads are cleaned up promptly
with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:
# Start the load operations and mark each future with its URL
future_to_url = {executor.submit(load_url, url, 60): url for url in URLS}
for future in concurrent.futures.as_completed(future_to_url):
url = future_to_url[future]
try:
data = future.result()
except Exception as exc:
print('%r generated an exception: %s' % (url, exc))
else:
print('%r page is %d bytes' % (url, len(data)))
실행 결과에서 알 수 있듯이 as_completed가 URLS 목록 요소 순서대로 반환되지 않습니다.
ziwenxie :: ~ » python example3.py 'http://example.com/' page is 1270 byte 'https://api.github.com/' page is 2039 bytes 'http://httpbin.org' page is 12150 bytesmap 사용
# example4.py
import concurrent.futures
import urllib.request
URLS = ['http://httpbin.org', 'http://example.com/', 'https://api.github.com/']
def load_url(url):
with urllib.request.urlopen(url, timeout=60) as conn:
return conn.read()
# We can use a with statement to ensure threads are cleaned up promptly
with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:
for url, data in zip(URLS, executor.map(load_url, URLS)):
print('%r page is %d bytes' % (url, len(data)))
실행 결과에서 알 수 있듯이 map은 URLS 목록의 순서대로 요소를 반환하며 작성된 코드가 더 간결해졌습니다. 그리고 직관적입니다. 귀하의 특정 필요에 따라 어느 하나를 선택할 수 있습니다.
ziwenxie :: ~ » python example4.py 'http://httpbin.org' page is 12150 bytes 'http://example.com/' page is 1270 bytes 'https://api.github.com/' page is 2039 bytes세 번째 옵션 waitwait 메서드는 튜플(tuple)을 반환합니다. 튜플에는 두 개의 다음 예시를 통해 세 매개변수의 차이점을 살펴보겠습니다.
from concurrent.futures import ThreadPoolExecutor, wait, as_completed from time import sleep from random import randint def return_after_random_secs(num): sleep(randint(1, 5)) return "Return of {}".format(num) pool = ThreadPoolExecutor(5) futures = [] for x in range(5): futures.append(pool.submit(return_after_random_secs, x)) print(wait(futures)) # print(wait(futures, timeout=None, return_when='FIRST_COMPLETED'))기본값인 ALL_COMPLETED를 사용하면 스레드 풀의 모든 작업이 완료될 때까지 프로그램이 차단됩니다.
ziwenxie :: ~ » python example5.py DoneAndNotDoneFutures(done={ <Future at 0x7f0b06c9bc88 state=finished returned str>, <Future at 0x7f0b06cbaa90 state=finished returned str>, <Future at 0x7f0b06373898 state=finished returned str>, <Future at 0x7f0b06352ba8 state=finished returned str>, <Future at 0x7f0b06373b00 state=finished returned str>}, not_done=set())FIRST_COMPLETED 매개변수를 사용하면 프로그램은 스레드 풀의 모든 작업이 완료될 때까지 기다리지 않습니다.
아아아아
위 내용은 Python 동시 프로그래밍의 스레드 풀/프로세스 풀에 대한 자세한 소개의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?

Fiddlerevery Where를 사용할 때 Man-in-the-Middle Reading에 Fiddlereverywhere를 사용할 때 감지되는 방법 ...


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

드림위버 CS6
시각적 웹 개발 도구

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기

Dreamweaver Mac版
시각적 웹 개발 도구

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.
