Python을 배우기 시작한 이후로 나는 자주 사용하는 "트릭" 목록을 유지하기로 결정했습니다. "멋지네요!"라고 생각하게 만드는 코드를 볼 때마다(예: StackOverflow, 오픈 소스 소프트웨어 등에서) 이해할 때까지 시도한 다음 목록에 추가합니다. . 이 게시물은 정리된 목록의 일부입니다. 숙련된 Python 프로그래머라면 이미 알고 있는 내용도 있지만 모르는 내용을 발견할 수도 있습니다. Python을 배우고 있거나 프로그래밍을 이제 막 배우기 시작한 C, C++ 또는 Java 프로그래머라면 나처럼 이들 중 많은 것이 매우 유용하다는 것을 알게 될 것입니다.
각각의 트릭이나 언어적 특징은 과도한 설명 없이 예시로만 확인할 수 있습니다. 예제를 명확하게 설명하려고 노력했지만 익숙함에 따라 일부 예제는 여전히 약간 복잡해 보일 수 있습니다. 따라서 예를 살펴본 후 확실하지 않은 경우 제목은 Google을 통해 자세한 내용을 얻을 수 있도록 충분한 정보를 제공할 수 있습니다.
목록은 난이도별로 정렬되어 있으며 일반적으로 사용되는 언어 기능과 기술이 앞에 있습니다.
1.1 분할
>>> a, b, c = 1, 2, 3
>>> >
(1, 2, 3) >>> a, b, c = [1, 2, 3] >>> b, c (1, 2, 3) >>> a, b, c = (2 * i + 1 for i in range(3)) >>> a, b, c (1, 3, 5) >>> a, (b, c), d = [1, (2, 3), 4] >>>a 1 >>> 2 >>> c 3 >>d 4 1.2 분할>>> a, b = 1, 2 >>>a, b = b, a >> ; a, b (2, 1) 1.3 확장 및 분할(Python 3에서 적용 가능)>>> [1, 2, 3, 4, 5] >>>a 1 >>b [2, 3, 4] >>> c 5 1.4 음수 지수 >>> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] >>> a[-1] 10>>> a[-3] 8 1.5 목록 분할(a[start:
end
])>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> 🎜>[2, 3, 4, 5, 6, 7]
1.6 음수 인덱스를 사용한 리스트 슬라이싱
>>> , 3, 4, 5, 6, 7, 8, 9, 10]
>>> >
1.7 단계 값이 있는 목록 슬라이스(a[start:end:step])>>> a = [0, 1, 2, 3, 4, 5, 6, 7 , 8, 9, 10] >>> a[::2] [0, 2, 4, 6, 8, 10] >>>a[::3] [0, 3, 6, 9] >>>[2, 4, 6]
1.8 음수 단계 값 목록 분할
>>> a = [0, 1, 2, 3 , 4, 5, 6 , 7, 8, 9, 10]
>>> a[::-1]
[10, 9, 8, 7, 6 , 5, 4, 3 , 2, 1, 0]
>>> a[::-2]
[10, 8, 6, 4, 2, 0 ]
1.9 목록 조각 할당
>>> a = [1, 2, 3, 4, 5]
>>> 0, 0]
>>> 1:1] = [8, 9]
>>>a
[1, 8, 9, 2, 0, 0, 4, 5]
>>> a[1:-1] = []
>>> a
[1, 5]
1.10 슬라이스(슬라이스(시작, 끝, 단계))
>>> a = [0, 1, 2, 3, 4, 5]
>>> LASTTHREE = 슬라이스(-3, 없음)
>>> LASTTHREE
슬라이스(-3, 없음, 없음)
> ;>> [LASTTHREE]
[3, 4, 5]
1.11
zip포장 및 개봉 목록 및 배수
>> [1, 2, 3]
>>> b = ['a', 'b', 'c']
> > a, b)
>>> z
[(1, 'a'), (2, 'b'), (3, 'c')] >>> zip(*z)
[(1, 2, 3), ('a', 'b', 'c')]
1.12 使사용zip합쳐상영적列表项
>>> a = [1, 2, 3, 4, 5, 6]
>>> zip(*([iter(a)] * 2))
[(1, 2), (3, 4), (5, 6)]
>>>> group_adjacent = 람다 a, k: zip(*([iter(a)] * k))
>>> group_adjacent(a, 3)
[(1, 2, 3), (4, 5, 6)]
>>> group_adjacent(a, 2)
[(1, 2), (3, 4), (5, 6)]
>>> group_adjacent(a, 1)
[(1,), (2,), (3,), (4,), (5,), (6,)]
>>> zip(a[::2], a[1::2])
[(1, 2), (3, 4), (5, 6)]
>>> zip(a[::3], a[1::3], a[2::3])
[(1, 2, 3), (4, 5, 6)]
>>> group_adjacent = 람다 a, k: zip(*(a[i::k] for i in range(k)))
>>> group_adjacent(a, 3)
[(1, 2, 3), (4, 5, 6)]
>>> group_adjacent(a, 2)
[(1, 2), (3, 4), (5, 6)]
>>> group_adjacent(a, 1)
[(1,), (2,), (3,), (4,), (5,), (6,)]
1.13使用zip and iterators生成滑动窗口 (n -grams)
>>> itertools import islice에서
>>> def n_grams(a, n):
... z = (islice(a, i, None) for i in range(n))
... return zip(*z)
...
>>> a = [1, 2, 3, 4, 5, 6]
>>> n_grams(a, 3)
[(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]
>>>> n_grams(a, 2)
[(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]
> ;>> n_grams(a, 4)
[(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6)]
1.14使用zip反转字典
>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
>>> m.items()
[('a', 1), ('c', 3), ('b', 2), ('d', 4)]
>>> zip(m.values(), m.keys())
[(1, 'a'), (3, 'c'), (2, 'b'), (4, 'd ')]
>>> mi = dict(zip(m.values(), m.keys()))
>>> mi
{1: 'a', 2: 'b', 3: 'c', 4: 'd'}
위 내용은 Python 언어의 꼭 봐야 할 기능과 기술 30가지(1)의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python의 실제 응용 프로그램에는 데이터 분석, 웹 개발, 인공 지능 및 자동화가 포함됩니다. 1) 데이터 분석에서 Python은 Pandas 및 Matplotlib를 사용하여 데이터를 처리하고 시각화합니다. 2) 웹 개발에서 Django 및 Flask 프레임 워크는 웹 응용 프로그램 생성을 단순화합니다. 3) 인공 지능 분야에서 Tensorflow와 Pytorch는 모델을 구축하고 훈련시키는 데 사용됩니다. 4) 자동화 측면에서 파이썬 스크립트는 파일 복사와 같은 작업에 사용할 수 있습니다.

Python은 데이터 과학, 웹 개발 및 자동화 스크립팅 필드에 널리 사용됩니다. 1) 데이터 과학에서 Python은 Numpy 및 Pandas와 같은 라이브러리를 통해 데이터 처리 및 분석을 단순화합니다. 2) 웹 개발에서 Django 및 Flask 프레임 워크를 통해 개발자는 응용 프로그램을 신속하게 구축 할 수 있습니다. 3) 자동 스크립트에서 Python의 단순성과 표준 라이브러리가 이상적입니다.

Python의 유연성은 다중 파리가 지원 및 동적 유형 시스템에 반영되며, 사용 편의성은 간단한 구문 및 풍부한 표준 라이브러리에서 나옵니다. 유연성 : 객체 지향, 기능 및 절차 프로그래밍을 지원하며 동적 유형 시스템은 개발 효율성을 향상시킵니다. 2. 사용 편의성 : 문법은 자연 언어에 가깝고 표준 라이브러리는 광범위한 기능을 다루며 개발 프로세스를 단순화합니다.

Python은 초보자부터 고급 개발자에 이르기까지 모든 요구에 적합한 단순성과 힘에 호의적입니다. 다목적 성은 다음과 같이 반영됩니다. 1) 배우고 사용하기 쉽고 간단한 구문; 2) Numpy, Pandas 등과 같은 풍부한 라이브러리 및 프레임 워크; 3) 다양한 운영 체제에서 실행할 수있는 크로스 플랫폼 지원; 4) 작업 효율성을 향상시키기위한 스크립팅 및 자동화 작업에 적합합니다.

예, 하루에 2 시간 후에 파이썬을 배우십시오. 1. 합리적인 학습 계획 개발, 2. 올바른 학습 자원을 선택하십시오. 3. 실습을 통해 학습 된 지식을 통합하십시오. 이 단계는 짧은 시간 안에 Python을 마스터하는 데 도움이 될 수 있습니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

Dreamweaver Mac版
시각적 웹 개발 도구
