찾다
웹 프론트엔드JS 튜토리얼JavaScript로 구현된 9가지 정렬 알고리즘의 코드 예제 공유

면접에는 다양한 알고리즘이 포함되는 경우가 많습니다. 이 기사에서는 일반적으로 사용되는 몇 가지 알고리즘을 간략하게 소개하고 JavaScript를 사용하여 이를 구현합니다.

1. 삽입 정렬

1) 알고리즘 소개

삽입 정렬(Insertion-Sort)의 알고리즘 설명은 간단하고 직관적인 정렬 알고리즘입니다. . 정렬되지 않은 데이터의 경우 정렬된 시퀀스의 뒤에서 앞으로 스캔하여 해당 위치를 찾아 삽입합니다. 삽입 정렬의 구현에서는 일반적으로 내부 정렬(즉, O(1) 추가 공간만 사용하는 정렬)이 사용됩니다. 따라서 뒤에서 앞으로 스캔하는 동안 정렬된 요소를 반복적이고 점진적으로 수행해야 합니다. 뒤로 이동하여 최신 요소에 대한 삽입 공간을 제공합니다.

2) 알고리즘 설명 및 구현

일반적으로 삽입 정렬은 in-place를 사용하여 배열에 구현됩니다. 구체적인 알고리즘은 다음과 같습니다.

  1. 첫 번째 요소부터 시작하여 요소가 정렬된 것으로 간주할 수 있습니다.

  2. 다음 요소, 그리고 정렬된 요소 순서를 뒤에서 앞으로 스캔합니다.

  3. (정렬된) 요소가 새 요소보다 크면 요소를 다음 위치로 이동합니다. >

  4. 정렬된 요소가 새 요소보다 작거나 같은 위치를 찾을 때까지 3단계를 반복하세요.

  5. 새 요소를 삽입한 후;

  6. 2~5단계를 반복하세요.

JavaScript 코드 구현:

function insertionSort(array) {
    if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') {
        for (var i = 1; i < array.length; i++) {
            var key = array[i];
            var j = i - 1;
            while (j >= 0 && array[j] > key) {
                array[j + 1] = array[j];
                j--;
            }
            array[j + 1] = key;
        }
        return array;
    } else {
        return &#39;array is not an Array!&#39;;
    }
}

3) 알고리즘 분석

  • 최상의 사례: 입력 배열은 오름차순으로 정렬됩니다. T(n) = O(n)

  • 최악의 경우: 입력 배열이 내림차순으로 정렬됩니다. T(n) = O(n2)

  • 평균 경우: T(n) = O(n2)

2. 이진 삽입 정렬

1) 알고리즘 소개

Binary-insert-sort는 직접 삽입 정렬 알고리즘에 작은 변화를 준 정렬 알고리즘입니다. 직접 삽입 정렬 알고리즘과 가장 큰 차이점은

이진 탐색 방식을 사용하여 삽입 위치를 찾는 점인데, 속도가 어느 정도 향상됩니다.

2) 알고리즘 설명 및 구현

일반적으로 삽입 정렬은 in-place를 사용하여 배열에 구현됩니다. 구체적인 알고리즘은 다음과 같습니다.

  1. 첫 번째 요소부터 시작하여 요소가 정렬된 것으로 간주할 수 있습니다.

  2. 이진 검색은 정렬된 요소 순서에서 그보다 큰 첫 번째 숫자의 위치를 ​​찾습니다.

  3. 이 위치에 새 요소를 삽입한 후; 🎜>

    위의 두 단계를 반복합니다.
  4. JavaScript 코드 구현:
  5. function binaryInsertionSort(array) {
        if (Object.prototype.toString.call(array).slice(8, -1) === &#39;Array&#39;) {
            for (var i = 1; i < array.length; i++) {
                var key = array[i], left = 0, right = i - 1;
                while (left <= right) {
                    var middle = parseInt((left + right) / 2);
                    if (key < array[middle]) {
                        right = middle - 1;
                    } else {
                        left = middle + 1;
                    }
                }
                for (var j = i - 1; j >= left; j--) {
                    array[j + 1] = array[j];
                }
                array[left] = key;
            }
            return array;
        } else {
            return &#39;array is not an Array!&#39;;
        }
    }

3) 알고리즘 분석

최상의 사례: T( n) = O(nlogn)
  • 최악의 경우: T(n) = O(n2)
  • 평균 경우: T(n) = O(n2)
  • 3.
  • 선택 정렬

1) 알고리즘 소개

선택 정렬은 간단하고 직관적인 정렬 알고리즘입니다. 작동 방식: 먼저 정렬되지 않은 시퀀스에서 가장 작은(큰) 요소를 찾아 이를 정렬된 시퀀스의 시작 부분에 저장한 다음, 정렬되지 않은 나머지 요소에서 가장 작은(큰) 요소를 계속 찾아 정렬된 시퀀스에 넣습니다. 시퀀스 끝. 모든 요소가 정렬될 때까지 계속됩니다.

2) 알고리즘 설명 및 구현

n 레코드의 직접 선택 정렬은 n-1 직접 선택 정렬 패스를 통해 정렬된 결과를 얻을 수 있습니다. 구체적인 알고리즘은 다음과 같습니다.

초기 상태: 정렬되지 않은 영역은 R[1..n]이고 정렬된 영역은 비어 있습니다.
  1. i번째 정렬(i=1,2,3...n-1)이 시작되면 현재 정렬된 영역과 정렬되지 않은 영역은 R[1..i-1] 및 R(i..n ) 각각. 이 정렬 작업은 현재 정렬되지 않은 영역에서 가장 작은 키를 가진 레코드 R[k]를 선택하고 이를 정렬되지 않은 영역의 첫 번째 레코드 R과 교환하므로 R[1..i] 및 R[i+1입니다. n) 각각 레코드 수가 1씩 증가한 새로운 주문 영역이 되고, 레코드 수가 1만큼 감소한 새로운 정렬되지 않은 영역이 됩니다.
  2. n-1 패스가 완료됩니다. 배열에 순서가 지정되어 있습니다.
  3. JavaScript 코드 구현:
  4. function selectionSort(array) {
        if (Object.prototype.toString.call(array).slice(8, -1) === &#39;Array&#39;) {
            var len = array.length, temp;
            for (var i = 0; i < len - 1; i++) {
                var min = array[i];
                for (var j = i + 1; j < len; j++) {
                    if (array[j] < min) {
                        temp = min;
                        min = array[j];
                        array[j] = temp;
                    }
                }
                array[i] = min;
            }
            return array;
        } else {
            return ‘array is not an Array!’;
        }
    }

3) 알고리즘 분석

최상의 사례: T( n) = O(n2)
  • 최악의 경우: T(n) = O(n2)
  • 평균 경우: T(n) = O(n2)
  • 4.
  • 버블 정렬

1) 알고리즘 소개

버블 정렬은 간단한 정렬 알고리즘입니다. 정렬할 순서를 반복적으로 살펴보고 한 번에 두 개의 요소를 비교하고 순서가 잘못된 경우 교체합니다. 더 이상 교환이 필요하지 않을 때까지 어레이 방문 작업이 반복됩니다. 이는 어레이가 정렬되었음을 의미합니다. 이 알고리즘의 이름은 작은 요소가 스와핑을 통해 배열의 맨 위로 천천히 "부동"된다는 사실에서 유래되었습니다.

2) 알고리즘 설명 및 구현

구체적인 알고리즘을 설명하면

인접한 요소를 비교합니다. 첫 번째 항목이 두 번째 항목보다 크면 둘 다 교체하세요.
  1. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;

  2. 针对所有的元素重复以上的步骤,除了最后一个;

  3. 重复步骤1~3,直到排序完成。

JavaScript代码实现:

function bubbleSort(array) {
    if (Object.prototype.toString.call(array).slice(8, -1) === &#39;Array&#39;) {
        var len = array.length, temp;
        for (var i = 0; i < len - 1; i++) {
            for (var j = len - 1; j >= i; j--) {
                if (array[j] < array[j - 1]) {
                    temp = array[j];
                    array[j] = array[j - 1];
                    array[j - 1] = temp;
                }
            }
        }
        return array;
    } else {
        return &#39;array is not an Array!&#39;;
    }
}

3)算法分析

  • 最佳情况:T(n) = O(n)

  • 最差情况:T(n) = O(n2)

  • 平均情况:T(n) = O(n2)

五、快速排序

1)算法简介

快速排序的基本思想:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

2)算法描述和实现

快速排序使用分治法来把一个串(list)分为两个子串(sub-lists)。具体算法描述如下:

  1. 从数列中挑出一个元素,称为 "基准"(pivot);

  2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;

  3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

JavaScript代码实现:

//方法一
function quickSort(array, left, right) {
    if (Object.prototype.toString.call(array).slice(8, -1) === &#39;Array&#39; && typeof left === &#39;number&#39; && typeof right === &#39;number&#39;) {
        if (left < right) {
            var x = array[right], i = left - 1, temp;
            for (var j = left; j <= right; j++) {
                if (array[j] <= x) {
                    i++;
                    temp = array[i];
                    array[i] = array[j];
                    array[j] = temp;
                }
            }
            quickSort(array, left, i - 1);
            quickSort(array, i + 1, right);
        };
    } else {
        return &#39;array is not an Array or left or right is not a number!&#39;;
    }
}  
var aaa = [3, 5, 2, 9, 1];
quickSort(aaa, 0, aaa.length - 1);
console.log(aaa);


//方法二
var quickSort = function(arr) {
  if (arr.length <= 1) { return arr; }
  var pivotIndex = Math.floor(arr.length / 2);
  var pivot = arr.splice(pivotIndex, 1)[0];
  var left = [];
  var right = [];
  for (var i = 0; i < arr.length; i++){
    if (arr[i] < pivot) {
      left.push(arr[i]);
    } else {
      right.push(arr[i]);
    }
  }
  return quickSort(left).concat([pivot], quickSort(right));
};

3)算法分析

  • 最佳情况:T(n) = O(nlogn)

  • 最差情况:T(n) = O(n2)

  • 平均情况:T(n) = O(nlogn)

六、堆排序

1)算法简介

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

2)算法描述和实现

具体算法描述如下:

  1. 将初始待排序关键字序列(R1,R2....Rn)构建成大顶堆,此堆为初始的无序区;

  2. 将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,......Rn-1)和新的有序区(Rn),且满足R[1,2...n-1]

  3. 由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,......Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2....Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。

JavaScript代码实现:

/*方法说明:堆排序
@param  array 待排序数组*/            
function heapSort(array) {
    if (Object.prototype.toString.call(array).slice(8, -1) === &#39;Array&#39;) {
        //建堆
        var heapSize = array.length, temp;
        for (var i = Math.floor(heapSize / 2) - 1; i >= 0; i--) {
            heapify(array, i, heapSize);
        }
        
        //堆排序
        for (var j = heapSize - 1; j >= 1; j--) {
            temp = array[0];
            array[0] = array[j];
            array[j] = temp;
            heapify(array, 0, --heapSize);
        }
    } else {
        return &#39;array is not an Array!&#39;;
    }
}
/*方法说明:维护堆的性质
@param  arr 数组
@param  x   数组下标
@param  len 堆大小*/
function heapify(arr, x, len) {
    if (Object.prototype.toString.call(arr).slice(8, -1) === &#39;Array&#39; && typeof x === &#39;number&#39;) {
        var l = 2 * x + 1, r = 2 * x + 2, largest = x, temp;
        if (l < len && arr[l] > arr[largest]) {
            largest = l;
        }
        if (r < len && arr[r] > arr[largest]) {
            largest = r;
        }
        if (largest != x) {
            temp = arr[x];
            arr[x] = arr[largest];
            arr[largest] = temp;
            heapify(arr, largest, len);
        }
    } else {
        return &#39;arr is not an Array or x is not a number!&#39;;
    }
}

3)算法分析

  • 最佳情况:T(n) = O(nlogn)

  • 最差情况:T(n) = O(nlogn)

  • 平均情况:T(n) = O(nlogn)

七、归并排序

1)算法简介

归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(pide and Conquer)的一个非常典型的应用。归并排序是一种稳定的排序方法。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。

2)算法描述和实现

具体算法描述如下:

  1. 把长度为n的输入序列分成两个长度为n/2的子序列;

  2. 对这两个子序列分别采用归并排序;

  3. 将两个排序好的子序列合并成一个最终的排序序列。

JavaScript代码实现:

function mergeSort(array, p, r) {
    if (p < r) {
        var q = Math.floor((p + r) / 2);
        mergeSort(array, p, q);
        mergeSort(array, q + 1, r);
        merge(array, p, q, r);
    }
}
function merge(array, p, q, r) {
    var n1 = q - p + 1, n2 = r - q, left = [], right = [], m = n = 0;
    for (var i = 0; i < n1; i++) {
        left[i] = array[p + i];
    }
    for (var j = 0; j < n2; j++) {
        right[j] = array[q + 1 + j];
    }
    left[n1] = right[n2] = Number.MAX_VALUE;
    for (var k = p; k <= r; k++) {
        if (left[m] <= right[n]) {
            array[k] = left[m];
            m++;
        } else {
            array[k] = right[n];
            n++;
        }
    }
}

3)算法分析

  • 最佳情况:T(n) = O(n)

  • 最差情况:T(n) = O(nlogn)

  • 平均情况:T(n) = O(nlogn)

八、桶排序

1)算法简介

桶排序 (Bucket sort)的工作的原理:假设输入数据服从均匀分布,将数据分到有限数量的桶里,每个桶再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排序)。

2)算法描述和实现

具体算法描述如下:

  1. 设置一个定量的数组当作空桶;

  2. 遍历输入数据,并且把数据一个一个放到对应的桶里去;

  3. 对每个不是空的桶进行排序;

  4. 从不是空的桶里把排好序的数据拼接起来。

JavaScript代码实现:

/*方法说明:桶排序
@param  array 数组
@param  num   桶的数量*/
function bucketSort(array, num) {
    if (array.length <= 1) {
        return array;
    }
    var len = array.length, buckets = [], result = [], min = max = array[0], regex = &#39;/^[1-9]+[0-9]*$/&#39;, space, n = 0;
    num = num || ((num > 1 && regex.test(num)) ? num : 10);
    for (var i = 1; i < len; i++) {
        min = min <= array[i] ? min : array[i];
        max = max >= array[i] ? max : array[i];
    }
    space = (max - min + 1) / num;
    for (var j = 0; j < len; j++) {
        var index = Math.floor((array[j] - min) / space);
        if (buckets[index]) {   //  非空桶,插入排序
            var k = buckets[index].length - 1;
            while (k >= 0 && buckets[index][k] > array[j]) {
                buckets[index][k + 1] = buckets[index][k];
                k--;
            }
            buckets[index][k + 1] = array[j];
        } else {    //空桶,初始化
            buckets[index] = [];
            buckets[index].push(array[j]);
        }
    }
    while (n < num) {
        result = result.concat(buckets[n]);
        n++;
    }
    return result;
}

3)算法分析

桶排序最好情况下使用线性时间O(n),桶排序的时间复杂度,取决与对各个桶之间数据进行排序的时间复杂度,因为其它部分的时间复杂度都为O(n)。很显然,桶划分的越小,各个桶之间的数据越少,排序所用的时间也会越少。但相应的空间消耗就会增大。

九、计数排序

1)算法简介

计数排序(Counting sort)是一种稳定的排序算法。计数排序使用一个额外的数组C,其中第i个元素是待排序数组A中值等于i的元素的个数。然后根据数组C来将A中的元素排到正确的位置。它只能对整数进行排序。

2)算法描述和实现

具体算法描述如下:

  1. 找出待排序的数组中最大和最小的元素;

  2. 统计数组中每个值为i的元素出现的次数,存入数组C的第i项;

  3. 对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加);

  4. 反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1。

JavaScript代码实现:

function countingSort(array) {
    var len = array.length, B = [], C = [], min = max = array[0];
    for (var i = 0; i < len; i++) {
        min = min <= array[i] ? min : array[i];
        max = max >= array[i] ? max : array[i];
        C[array[i]] = C[array[i]] ? C[array[i]] + 1 : 1;
    }
    for (var j = min; j < max; j++) {
        C[j + 1] = (C[j + 1] || 0) + (C[j] || 0);
    }
    for (var k = len - 1; k >=0; k--) {
        B[C[array[k]] - 1] = array[k];
        C[array[k]]--;
    }
    return B;
}

3)算法分析

当输入的元素是n 个0到k之间的整数时,它的运行时间是 O(n + k)。计数排序不是比较排序,排序的速度快于任何比较排序算法。由于用来计数的数组C的长度取决于待排序数组中数据的范围(等于待排序数组的最大值与最小值的差加上1),这使得计数排序对于数据范围很大的数组,需要大量时间和内存。

위 내용은 JavaScript로 구현된 9가지 정렬 알고리즘의 코드 예제 공유의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
브라우저 너머 : 실제 세계의 JavaScript브라우저 너머 : 실제 세계의 JavaScriptApr 12, 2025 am 12:06 AM

실제 세계에서 JavaScript의 응용 프로그램에는 서버 측 프로그래밍, 모바일 애플리케이션 개발 및 사물 인터넷 제어가 포함됩니다. 1. 서버 측 프로그래밍은 Node.js를 통해 실현되며 동시 요청 처리에 적합합니다. 2. 모바일 애플리케이션 개발은 재교육을 통해 수행되며 크로스 플랫폼 배포를 지원합니다. 3. Johnny-Five 라이브러리를 통한 IoT 장치 제어에 사용되며 하드웨어 상호 작용에 적합합니다.

Next.js (백엔드 통합)로 멀티 테넌트 SAAS 애플리케이션 구축Next.js (백엔드 통합)로 멀티 테넌트 SAAS 애플리케이션 구축Apr 11, 2025 am 08:23 AM

일상적인 기술 도구를 사용하여 기능적 다중 테넌트 SaaS 응용 프로그램 (Edtech 앱)을 구축했으며 동일한 작업을 수행 할 수 있습니다. 먼저, 다중 테넌트 SaaS 응용 프로그램은 무엇입니까? 멀티 테넌트 SAAS 응용 프로그램은 노래에서 여러 고객에게 서비스를 제공 할 수 있습니다.

Next.js (Frontend Integration)를 사용하여 멀티 테넌트 SaaS 응용 프로그램을 구축하는 방법Next.js (Frontend Integration)를 사용하여 멀티 테넌트 SaaS 응용 프로그램을 구축하는 방법Apr 11, 2025 am 08:22 AM

이 기사에서는 Contrim에 의해 확보 된 백엔드와의 프론트 엔드 통합을 보여 주며 Next.js를 사용하여 기능적인 Edtech SaaS 응용 프로그램을 구축합니다. Frontend는 UI 가시성을 제어하기 위해 사용자 권한을 가져오고 API가 역할 기반을 준수하도록합니다.

JavaScript : 웹 언어의 다양성 탐색JavaScript : 웹 언어의 다양성 탐색Apr 11, 2025 am 12:01 AM

JavaScript는 현대 웹 개발의 핵심 언어이며 다양성과 유연성에 널리 사용됩니다. 1) 프론트 엔드 개발 : DOM 운영 및 최신 프레임 워크 (예 : React, Vue.js, Angular)를 통해 동적 웹 페이지 및 단일 페이지 응용 프로그램을 구축합니다. 2) 서버 측 개발 : Node.js는 비 차단 I/O 모델을 사용하여 높은 동시성 및 실시간 응용 프로그램을 처리합니다. 3) 모바일 및 데스크탑 애플리케이션 개발 : 크로스 플랫폼 개발은 개발 효율을 향상시키기 위해 반응 및 전자를 통해 실현됩니다.

JavaScript의 진화 : 현재 동향과 미래 전망JavaScript의 진화 : 현재 동향과 미래 전망Apr 10, 2025 am 09:33 AM

JavaScript의 최신 트렌드에는 Typescript의 Rise, 현대 프레임 워크 및 라이브러리의 인기 및 WebAssembly의 적용이 포함됩니다. 향후 전망은보다 강력한 유형 시스템, 서버 측 JavaScript 개발, 인공 지능 및 기계 학습의 확장, IoT 및 Edge 컴퓨팅의 잠재력을 포함합니다.

Demystifying JavaScript : 그것이하는 일과 중요한 이유Demystifying JavaScript : 그것이하는 일과 중요한 이유Apr 09, 2025 am 12:07 AM

JavaScript는 현대 웹 개발의 초석이며 주요 기능에는 이벤트 중심 프로그래밍, 동적 컨텐츠 생성 및 비동기 프로그래밍이 포함됩니다. 1) 이벤트 중심 프로그래밍을 사용하면 사용자 작업에 따라 웹 페이지가 동적으로 변경 될 수 있습니다. 2) 동적 컨텐츠 생성을 사용하면 조건에 따라 페이지 컨텐츠를 조정할 수 있습니다. 3) 비동기 프로그래밍은 사용자 인터페이스가 차단되지 않도록합니다. JavaScript는 웹 상호 작용, 단일 페이지 응용 프로그램 및 서버 측 개발에 널리 사용되며 사용자 경험 및 크로스 플랫폼 개발의 유연성을 크게 향상시킵니다.

Python 또는 JavaScript가 더 좋습니까?Python 또는 JavaScript가 더 좋습니까?Apr 06, 2025 am 12:14 AM

Python은 데이터 과학 및 기계 학습에 더 적합한 반면 JavaScript는 프론트 엔드 및 풀 스택 개발에 더 적합합니다. 1. Python은 간결한 구문 및 풍부한 라이브러리 생태계로 유명하며 데이터 분석 및 웹 개발에 적합합니다. 2. JavaScript는 프론트 엔드 개발의 핵심입니다. Node.js는 서버 측 프로그래밍을 지원하며 풀 스택 개발에 적합합니다.

JavaScript를 어떻게 설치합니까?JavaScript를 어떻게 설치합니까?Apr 05, 2025 am 12:16 AM

JavaScript는 이미 최신 브라우저에 내장되어 있기 때문에 설치가 필요하지 않습니다. 시작하려면 텍스트 편집기와 브라우저 만 있으면됩니다. 1) 브라우저 환경에서 태그를 통해 HTML 파일을 포함하여 실행하십시오. 2) Node.js 환경에서 Node.js를 다운로드하고 설치 한 후 명령 줄을 통해 JavaScript 파일을 실행하십시오.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

Atom Editor Mac 버전 다운로드

Atom Editor Mac 버전 다운로드

가장 인기 있는 오픈 소스 편집기

SecList

SecList

SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

DVWA

DVWA

DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

SublimeText3 Linux 새 버전

SublimeText3 Linux 새 버전

SublimeText3 Linux 최신 버전

에디트플러스 중국어 크랙 버전

에디트플러스 중국어 크랙 버전

작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음