찾다
백엔드 개발파이썬 튜토리얼Python에서 pandas.DataFrame(생성, 색인, 추가 및 삭제)의 간단한 작업 방법 소개

이 글에서는 생성, 인덱싱, 추가, 삭제에 대한 관련 정보를 포함하여 Python에서 pandas.DataFrame의 간단한 작업 방법(생성, 인덱싱, 추가 및 삭제)을 소개합니다. 참고로 아래를 살펴보겠습니다.

머리말

최근 인터넷에서 pandas.DataFrame에 대한 조작방법을 많이 찾아봤는데, 다 기본조작이지만, 이러한 작업의 조합 DataFrame을 올바르게 작동하려면 아직 시간이 걸리는 것 같고, 버그를 조정하는 데도 오랜 시간이 걸렸습니다. 나는 당신과 나와 다른 사람들의 편의를 위해 여기에 몇 가지 요약을 작성하겠습니다. 관심 있는 친구들은 와서 구경해 보세요.

1. DataFrame을 생성하는 간단한 작업:

1. 사전을 기반으로 생성:

In [1]: import pandas as pd
In [3]: aa={'one':[1,2,3],'two':[2,3,4],'three':[3,4,5]}
In [4]: bb=pd.DataFrame(aa)
In [5]: bb
Out[5]: 
 one three two
0 1 3 2
1 2 4 3
2 3 5 4`

사전의 키는 DataFrame의 열이지만 인덱스 값이 없으므로 직접 설정해야 합니다. 설정하지 않으면 기본값은 0부터 계산됩니다.

bb=pd.DataFrame(aa,index=['first','second','third'])
bb
Out[7]: 
 one three two
first 1 3 2
second 2 4 3
third 3 5 4

2. 다차원 배열에서 생성

import numpy as np
In [9]: del aa
In [10]: aa=np.array([[1,2,3],[4,5,6],[7,8,9]])
In [11]: aa
Out[11]: 
array([[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]])
In [12]: bb=pd.DataFrame(aa)
In [13]: bb
Out[13]: 
 0 1 2
0 1 2 3
1 4 5 6
2 7 8 9

다차원 배열에서 생성하려면 DataFrame에 열과 인덱스를 할당해야 합니다. 그렇지 않으면 그것은 추악한 기본값이 될 것입니다.

bb=pd.DataFrame(aa,index=[22,33,44],columns=['one','two','three'])
In [15]: bb
Out[15]: 
 one two three
22 1 2 3
33 4 5 6
44 7 8 9

3. 다른 DataFrame을 사용하여

bb=pd.DataFrame(aa,index=[22,33,44],columns=['one','two','three'])
bb
Out[15]: 
 one two three
22 1 2 3
33 4 5 6
44 7 8 9
cc=bb[['one','three']].copy()
Cc
Out[17]: 
 one three
22 1 3
33 4 6
44 7 9

를 생성합니다. 여기의 복사본은 cc의 값을 변경하면 bb의 값을 변경할 수 없습니다.

cc['three'][22]=5
bb
Out[19]: 
 one two three
22 1 2 3
33 4 5 6
44 7 8 9

cc
Out[20]: 
 one three
22 1 5
33 4 6
44 7 9

2. DataFrame의 인덱스 작업:

DataFrame의 경우 인덱스 작업이 가장 번거롭고 오류가 발생하기 쉽습니다.

1. 하나 이상의 열을 인덱싱하는 것은 비교적 간단합니다.

bb['one']
Out[21]: 
22 1
33 4
44 7
Name: one, dtype: int32

열 이름이 여러 개인 경우 입력 열 이름을 목록에 저장해야 합니다. 변수입니다. 그렇지 않으면 오류가 보고됩니다.

bb[['one','three']]
Out[29]: 
 one three
22 1 3
33 4 6
44 7 9

2. 하나의 레코드 또는 여러 레코드 인덱스:

bb[1:3]
Out[27]: 
 one two three
33 4 5 6
44 7 8 9
bb[:1]
Out[28]: 
 one two three
22 1 2 3

여기서 콜론이 필수라는 점에 유의하세요. 그렇지 않으면 인덱스 열이 됩니다. .

3. 특정 열의 특정 변수 레코드를 색인화하는 것은 오랫동안 저를 괴롭혔습니다.

첫 번째 유형

bb.loc[[22,33]][['one','three']]
Out[30]: 
 one three
22 1 3
33 4 6

는 여기서 값을 변경할 수 없습니다. 값을 읽을 수만 있고 쓸 수는 없습니다. loc() 함수와 관련이 있을 수 있습니다.

bb.loc[[22,33]][['one','three']]=[[2,2],[3,6]]
In [32]: bb
Out[32]: 
 one two three
22 1 2 3
33 4 5 6
44 7 8 9

두 번째 유형:

bb[['one','three']][:2]
Out[33]: 
 one three
22 1 3
33 4 6

값을 변경하려는 경우 오류가 보고됩니다.

In [34]: bb[['one','three']][:2]=[[2,2],[2,2]]
-c:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead
F:\Anaconda\lib\site-packages\pandas\core\frame.py:1999: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame
 return self._setitem_slice(indexer, value)

세 번째 유형: 데이터 값을 변경할 수 있습니다! ! !

Iloc은 인덱스와 열을 계산하지 않고 데이터의 행과 열 수에 따라 인덱스를 생성합니다

bb.iloc[2:3,2:3]
Out[36]: 
 three
44 9

bb.iloc[1:3,1:3]
Out[37]: 
 two three
33 5 6
44 8 9
bb.iloc[0,0]
Out[38]: 1

다음은 증명입니다.

bb.iloc[0:4,0:2]=[[9,9],[9,9],[9,9]]
In [45]: bb
Out[45]: 
 one two three
22 9 9 3
33 9 9 6
44 9 9 9

3. 원본에서 DataFrame에 새 열 또는 여러 열을 만듭니다.

1. 아무것도 사용하지 않고 여러 열만 만들 수 있습니다. 개인 테스트가 작동하지 않습니다:

bb['new']=[2,3,4]
bb
Out[51]: 
 one two three new
22 9 9 3 2
33 9 9 6 3
44 9 9 9 4
bb[['new','new2']]=[[2,3,4],[5,3,7]]
KeyError: "['new' 'new2'] not in index"
할당된 목록은 기본적으로 주어진 인덱스 값의 순서로 할당되지만 일반적으로 더 고급 할당을 원할 경우 해당 인덱스를 할당해야 합니다. 다음을 보세요.

2. 사전을 사용하여 인덱스별로 여러 열에 값을 할당합니다.

aa={33:[234,44,55],44:[657,77,77],22:[33,55,457]}
In [58]: bb=bb.join(pd.DataFrame(aa.values(),columns=['hi','hello','ok'],index=aa.keys()))
In [59]: bb
Out[59]: 
 one two three new hi hello ok
22 9 9 3 2 33 55 457
33 9 9 6 3 234 44 55
44 9 9 9 4 657 77 77
여기서 aa는 레코드에 해당하는 중첩된 사전 및 목록입니다. 키를 일반적인 기본 열 이름 대신 인덱스 이름으로 사용합니다. 여러 열을 인덱스별로 일치시키는 목적이 달성되었습니다.

의 저장 공간이 혼란스럽기 때문에 인덱스에 값을 할당하지 않고

을 사용하면 기록에 혼란이 발생할 수 있다는 점은 주목할 만합니다. dict()dict()

4. 여러 열 또는 레코드 삭제:

열 삭제

bb.drop(['new','hi'],axis=1)
Out[60]: 
 one two three hello ok
22 9 9 3 55 457
33 9 9 6 44 55
44 9 9 9 77 77

레코드 삭제

bb.drop([22,33],axis=0)
Out[61]: 
 one two three new hi hello ok
44 9 9 9 4 657 77 77
Python의 pandas.DataFrame에서 행과 열을 합산하고 새 행과 열을 추가하는 방법에 대한 기사를 공유해 보세요.

DataFrame에는 아직 다루지 않은 기능이 많이 있습니다. 앞으로는 공식 웹사이트에서 API를 읽어본 후 계속 공유하겠습니다.

관련 기사:

행과 열을 합산하고 새 행과 열을 추가하는 Python의 pandas.DataFrame 정보 샘플 코드

자세히 Python에서 특정 행을 제외하는 pandas.DataFrame 메서드의 샘플 코드 설명

위 내용은 Python에서 pandas.DataFrame(생성, 색인, 추가 및 삭제)의 간단한 작업 방법 소개의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
详细讲解Python之Seaborn(数据可视化)详细讲解Python之Seaborn(数据可视化)Apr 21, 2022 pm 06:08 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

详细了解Python进程池与进程锁详细了解Python进程池与进程锁May 10, 2022 pm 06:11 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

Python自动化实践之筛选简历Python自动化实践之筛选简历Jun 07, 2022 pm 06:59 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

归纳总结Python标准库归纳总结Python标准库May 03, 2022 am 09:00 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于标准库总结的相关问题,下面一起来看一下,希望对大家有帮助。

分享10款高效的VSCode插件,总有一款能够惊艳到你!!分享10款高效的VSCode插件,总有一款能够惊艳到你!!Mar 09, 2021 am 10:15 AM

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

python中文是什么意思python中文是什么意思Jun 24, 2019 pm 02:22 PM

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。

Python数据类型详解之字符串、数字Python数据类型详解之字符串、数字Apr 27, 2022 pm 07:27 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

详细介绍python的numpy模块详细介绍python的numpy模块May 19, 2022 am 11:43 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

SublimeText3 Linux 새 버전

SublimeText3 Linux 새 버전

SublimeText3 Linux 최신 버전

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구