HashMap의 저장 구조는 그림과 같습니다. 버킷에 노드가 8개 이상이면 저장 구조는 레드-블랙 트리이고, 노드가 8개 미만이면 1-트리입니다. 방법 연결리스트.
1: HashMap의 일부 속성
public class HashMap<k,v> extends AbstractMap<k,v> implements Map<k,v>, Cloneable, Serializable { private static final long serialVersionUID = 362498820763181265L; // 默认的初始容量是16 static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // 最大容量 static final int MAXIMUM_CAPACITY = 1 << 30; // 默认的填充因子(以前的版本也有叫加载因子的) static final float DEFAULT_LOAD_FACTOR = 0.75f; // 这是一个阈值,当桶(bucket)上的链表数大于这个值时会转成红黑树,put方法的代码里有用到 static final int TREEIFY_THRESHOLD = 8; // 也是阈值同上一个相反,当桶(bucket)上的链表数小于这个值时树转链表 static final int UNTREEIFY_THRESHOLD = 6; // 看源码注释里说是:树的最小的容量,至少是 4 x TREEIFY_THRESHOLD = 32 然后为了避免(resizing 和 treeification thresholds) 设置成64 static final int MIN_TREEIFY_CAPACITY = 64; // 存储元素的数组,总是2的倍数 transient Node<k,v>[] table; transient Set<map.entry<k,v>> entrySet; // 存放元素的个数,注意这个不等于数组的长度。 transient int size; // 每次扩容和更改map结构的计数器 transient int modCount; // 临界值 当实际大小(容量*填充因子)超过临界值时,会进行扩容 int threshold; // 填充因子 final float loadFactor;
2: HashMap의 구성 방법
// 指定初始容量和填充因子的构造方法 public HashMap(int initialCapacity, float loadFactor) { // 指定的初始容量非负 if (initialCapacity < 0) throw new IllegalArgumentException(Illegal initial capacity: + initialCapacity); // 如果指定的初始容量大于最大容量,置为最大容量 if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; // 填充比为正 if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException(Illegal load factor: + loadFactor); this.loadFactor = loadFactor; // 指定容量后,tableSizeFor方法计算出临界值,put数据的时候如果超出该值就会扩容,该值肯定也是2的倍数 // 指定的初始容量没有保存下来,只用来生成了一个临界值 this.threshold = tableSizeFor(initialCapacity); } // 该方法保证总是返回大于cap并且是2的倍数的值,比如传入999 返回1024 static final int tableSizeFor(int cap) { int n = cap - 1; // 向右做无符号位移 n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; // 三目运算符的嵌套 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; } //构造函数2 public HashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); } //构造函数3 public HashMap() { this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted }
3: 배열에서 요소의 위치를 가져오고 넣을 때 결정
static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); }
위치를 결정하려면
첫 번째 단계: 먼저 int 유형 숫자인 키의 해시 코드를 계산합니다. 다음 h>>>16개의 소스 코드 주석에는 다음과 같은 내용이 있습니다. 해시 충돌(해시 충돌)을 피하기 위해 높은 비트가 낮은 비트로 분산되는 것은 속도, 성능 등 다양한 요소를 종합적으로 고려한 후에 이루어집니다. .
2단계: h는 해시 코드이고, length는 위의 Node[] 배열 길이입니다. AND 연산 h &(길이-1)를 수행합니다. 길이는 2-1의 배수이므로 이진 코드는 모두 1이고, 1과 위의 다른 숫자의 결과는 0 또는 1이 될 수 있으므로 연산 후 균일성을 보장합니다. 즉, 해시 방법은 결과의 균일성을 보장하는데, 이는 매우 중요하며 HashMap의 put 및 get 성능에 큰 영향을 미칩니다. 아래 비교를 보세요:
그림 3.1은 비대칭 해시 결과입니다.
그림 3.2는 균형 잡힌 해시 결과입니다.
이 두 그림에는 데이터가 많지 않습니다. 연결 리스트의 길이가 8을 초과하면 레드-블랙 트리로 변환됩니다. jdk8 이전에는 항상 연결 목록이었습니다. 연결 목록 쿼리의 복잡도는 O(n)인 반면, 레드-블랙 트리의 쿼리 복잡도는 O(log(n))입니다. 그 자체의 특성에 맞게. 해시 결과가 고르지 않으면 작업의 복잡성에 큰 영향을 미칩니다. 관련 지식은 여기72e1214e15ec42bfc5f5aa5e4f182c03Red-Black Tree 기초 지식 블로그5db79b134e9f6b82c0b36e0489ee08ed인터넷에 예시도 있습니다 확인 방법: 객체를 키로 사용자 정의하고 hashCode() 메서드를 조정하여
public class MutableKeyTest { public static void main(String args[]){ class MyKey { Integer i; public void setI(Integer i) { this.i = i; } public MyKey(Integer i) { this.i = i; } @Override public int hashCode() { // 如果返回1 // return 1 return i; } // object作为key存map里,必须实现equals方法 @Override public boolean equals(Object obj) { if (obj instanceof MyKey) { return i.equals(((MyKey)obj).i); } else { return false; } } } // 我机器配置不高,25000的话正常情况27毫秒,可以用2500万试试,如果hashCode()方法返回1的话,250万就卡死 Map<MyKey,String> map = new HashMap<>(25000,1); Date begin = new Date(); for (int i = 0; i < 20000; i++){ map.put(new MyKey(i), "test " + i); } Date end = new Date(); System.out.println("时间(ms) " + (end.getTime() - begin.getTime()));
를 넣는 데 걸리는 시간을 확인합니다. 4: get 메서드
public V get(Object key) { Node<k,v> e; return (e = getNode(hash(key), key)) == null ? null : e.value; } final Node<k,v> getNode(int hash, Object key) { Node<k,v>[] tab; Node<k,v> first, e; int n; K k; // hash & (length-1)得到红黑树的树根位置或者是链表的表头 if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) return first; if ((e = first.next) != null) { // 如果是树,遍历红黑树复杂度是O(log(n)),得到节点值 if (first instanceof TreeNode) return ((TreeNode<k,v>)first).getTreeNode(hash, key); // else是链表结构 do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; }
5: 넣기 방법, 넣을 때 h & (길이 – 1)에 따라 버킷을 찾은 다음 레드-블랙 트리인지 a인지 확인합니다. 연결된 목록을 입력한 다음 putVal
public V put(K key, V value) { return putVal(hash(key), key, value, false, true); } final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<k,v>[] tab; Node<k,v> p; int n, i; // 如果tab为空或长度为0,则分配内存resize() if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; // (n - 1) & hash找到put位置,如果为空,则直接put if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); else { Node<k,v> e; K k; // 第一节节点hash值同,且key值与插入key相同 if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k)))) e = p; else if (p instanceof TreeNode) // 红黑树的put方法比较复杂,putVal之后还要遍历整个树,必要的时候修改值来保证红黑树的特点 e = ((TreeNode<k,v>)p).putTreeVal(this, tab, hash, key, value); else { // 链表 for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { // e为空,表示已到表尾也没有找到key值相同节点,则新建节点 p.next = newNode(hash, key, value, null); // 新增节点后如果节点个数到达阈值,则将链表转换为红黑树 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } // 容许空key空value if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } // 更新hash值和key值均相同的节点Value值 if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; if (++size > threshold) resize(); afterNodeInsertion(evict); return null; }
6: resize 메서드
final Node<K,V>[] resize() { Node<K,V>[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; if (oldCap > 0) { if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } // 这一句比较重要,可以看出每次扩容是2倍 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // zero initial threshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab; if (oldTab != null) { for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) { oldTab[j] = null; if (e.next == null) newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); else { // preserve order Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next; if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }
위는 다음과 같습니다. 에디터가 소개한 Java8 HashMap 구현 원리 분석에 대한 관련 지식이 모든 분들께 도움이 되었으면 좋겠습니다!
Java8 HashMap의 구현 원리 분석과 관련된 더 많은 기사를 보려면 PHP 중국어 웹사이트를 주목하세요!