찾다
Javajava지도 시간Java 공통 정렬 알고리즘 및 성능 테스트 모음

이제 다시 돌아가서 자신의 경험을 결합하고 작동 원리와 프로그래밍 기술에 대한 이해를 돕기 위해 이러한 알고리즘을 설명하는 가장 좋은 방법을 선택하세요. 이 기사는 Java 인터뷰를 준비하기 위한 자료를 읽는 데 적합합니다.

먼저 테스트 보고서를 첨부하세요.

배열 길이: 20000
bubbleSort: 766ms
bubbleSortAdvanced: 662ms
bubbleSortAdvanced2: 647ms
selectSort: 252ms
insertSort: 218ms
insertSortAdvanced: 127ms
insertSortAdvanced2: 191ms
binaryTreeSort: 3ms
shellSort: 2ms
shellSortAdvanced: 2ms
shellSortAdvanced2: 1 ms
mergeSort: 3ms
quickSort: 1ms
heapSort: 2ms

테스트 후에 버블 정렬은 쓰레기통에 버려야 할 충분한 이유가 있다고 생각할 수 있습니다. 존재하는 유일한 이유는 아마도 가장 잘 이해될 것입니다. 나는 Hill 정렬의 효율성을 기대하지 않았습니다. 힙 정렬은 이해하고 작성하기 어렵고 거시적 사고가 필요합니다.

package algorithm.sort;

import java.lang.reflect.Method;
import java.util.Arrays;
import java.util.Date;
/**
 * Java常用排序算法及性能测试集合
 * 
 * 本程序集合涵盖常用排序算法的编写,并在注释中配合极其简单的特例讲解了各种算法的工作原理,以方便理解和吸收;
 * 程序编写过程中吸收了很多维基百科和别人blog上面的例子,并结合自己的思考,选择并改进一个最容易让人理解的写法
 *(尤其是快速排序,我觉得我写的算法最好理解)。
 * 同时包含一个集中式的性能测试和正确性测试方法,方便观测。
 * @author /link.php?url=http://blog.csdn.net/sunxing007
 * 转载请注明来自/link.php?url=http://blog.csdn.net/sunxing007
 */
public class SortUtil {
 // 被测试的方法集合
 static String[] methodNames = new String[]{
  "bubbleSort",
  "bubbleSortAdvanced",
  "bubbleSortAdvanced2",
  "selectSort",
  "insertSort",
  "insertSortAdvanced",
  "insertSortAdvanced2",
  "binaryTreeSort",
  "shellSort",
  "shellSortAdvanced",
  "shellSortAdvanced2",
  "mergeSort",
  "quickSort",
  "heapSort"
 };
    public static void main(String[] args) throws Exception{
     //correctnessTest();
     performanceTest(20000);
    }

    /**
     * 正确性测试<br>
     * 简单地测试一下各个算法的正确性<br>
     * 只是为了方便观测新添加的算法是否基本正确;<br>
     * @throws Exception 主要是反射相关的Exception;<br>
     */
    public static void correctnessTest() throws Exception{
     int len = 10;
     int[] a = new int[len];
     for(int i=0; i<methodNames.length; i++){
      for(int j=0; j<a.length; j++){
          a[j] = (int)Math.floor(Math.random()*len*2);
         }
      Method sortMethod = null;
      sortMethod = SortUtil.class.getDeclaredMethod(methodNames[i], a.getClass());
      Object o = sortMethod.invoke(null, a);
      System.out.print(methodNames[i] + " : ");
      if(o==null){
       System.out.println(Arrays.toString(a));
      }
      else{
       //兼顾mergeSort,它的排序结果以返回值的形式出现;
       System.out.println(Arrays.toString((int[])o));
      }
     }
    }

    /**
     * 性能测试<br>
     * 数组长度用参数len传入,每个方法跑20遍取耗时平均值;<br>
     * @param len 数组长度 建议取10000以上,否则有些算法会显示耗时为0;<br>
     * @throws Exception 主要是反射相关的Exception;<br>
     */
    public static void performanceTest(int len) throws Exception{
     int[] a = new int[len];
     int times = 20;

     System.out.println("Array length: " + a.length);
     for(int i=0; i<methodNames.length; i++){
      Method sortMethod = null;
      sortMethod = SortUtil.class.getDeclaredMethod(methodNames[i], a.getClass());
      int totalTime = 0;
      for(int j=0; j<times; j++){
       for(int k=0; k<len; k++){
           a[k] = (int)Math.floor(Math.random()*20000);
          }
       long start = new Date().getTime();
       sortMethod.invoke(null, a);
       long end = new Date().getTime();
       totalTime +=(end-start);
      }
      System.out.println(methodNames[i] + " : " + (totalTime/times) + " ms");
      //System.out.println(Arrays.toString(a));
     }
    }

    /**
     * 最原始的冒泡交换排序;<br>
     * 两层遍历,外层控制扫描的次数,内层控制比较的次数;<br>
     * 外层每扫描一次,就有一个最大的元素沉底;所以内层的比较次数将逐渐减小;<br>
     */
    public static void bubbleSort(int[] a){
        for(int i=0; i<a.length; i++){
            for(int j=0; j<a.length-i-1; j++){
                if(a[j]>a[j+1]){
                    int tmp = a[j];
                    a[j] = a[j+1];
                    a[j+1] = tmp;
                }
            }
        }
    }

    /**
     * 改进的冒泡法<br>
     * 改进之处在于:设一个标志位,如果某趟跑下来,没有发生交换,说明已经排好了;<br>
     */
    public static void bubbleSortAdvanced(int[] a){
        int k = a.length-1;
        boolean flag = true;
        while(flag){
            flag = false;
            for(int i=0;i<k;i++){
                if(a[i]>a[i+1]){
                    int tmp = a[i];
                    a[i] = a[i+1];
                    a[i+1] = tmp;
                    //有交换则继续保持标志位;
                    flag = true;
                }
            }
            k--;
        }
    }

    /**
     * 改进的冒泡法2<br>
     * 改进之处在于吸收上面的思想(没有交换意味着已经有序),如果局部的已经是有序的,则后续的比较就不需要再比较他们了。<br>
     * 比如:3142 5678,假如刚刚做完了2和4交换之后,发现这趟比较后续再也没有发生交换,则后续的比较只需要比到4即可;<br>
     * 该算法就是用一个标志位记录某趟最后发生比较的地点;<br>
     */
    public static void bubbleSortAdvanced2(int[] a){
        int flag = a.length - 1;
        int k;
        while(flag>0){
            k = flag;
            flag = 0;
            for(int i=0; i<k; i++){
                if(a[i] > a[i+1]){
                    int tmp = a[i];
                    a[i] = a[i+1];
                    a[i+1] = tmp;
                    //有交换则记录该趟最后发生比较的地点;
                    flag = i+1;
                }
            }
        }
    }

    /**
     * 插入排序
     * 
     * 关于插入排序,这里有几个约定,从而可以快速理解算法:<br>
     * i: 无序表遍历下标;i<n-1;<br>
     * j: 有序表遍历下表;0<=j<i;<br>
     * a[i]:表示当前被拿出来做插入排序的无序表头元素;<br>
     * a[j]:有序表中的任意元素;<br>
     * <br>
     * 算法关键点:把数组分割为a[0~i-1]有序表,a[i~n-1]无序表;每次从无序表头部取一个,<br>
     * 把它插入到有序表适当的位置,直到无序表为空;<br>
     * 初始时,a[0]为有序表,a[1~n-1]为无序表;<br>
     */
    public static void insertSort(int[] a){
        //从无序表头开始遍历;
        for(int i=1; i<a.length; i++){
            int j;
            //拿a[i]和有序表元素依次比较,找到一个恰当的位置;
            for(j=i-1;j>=0; j--){
                if(a[j] < a[i]){
                    break;
                }
            }
            //如果找到恰当的位置,则从该位置开始,把元素朝后移动一格,为插入的元素腾出空间;
            if(j!=(i-1)){
                int tmp = a[i];
                int k;
                for(k = i-1; k>j;k--){
                    a[k+1] = a[k];
                }
                a[k+1] = tmp;
            }
        }
    }

    /**
     * 改进的插入排序1
     * 改进的关键在于:首先拿无序表头元素a[i]和有序表尾a[i-1]比较,
     * 如果a[i]<a[i-1],说明需要调整;调整的过程为:
     * 从有序表尾开始,把有序表里面比a[i]大的元素都朝后移动,直到找到恰当的位置;
     */
    public static void insertSortAdvanced(int[] a){
        //遍历无序表;
        for(int i=1; i<a.length; i++){
            //如果无序表头元素小于有序表尾,说明需要调整;
            if(a[i]<a[i-1]){
                int tmp = a[i];
                int j;
                //从有序表尾朝前搜索并比较,并把大于a[i]的元素朝后移动以腾出空间;
                for(j=i-1; j>=0&&a[j]>tmp;j--){
                    a[j+1] = a[j];
                }
                a[j+1] = tmp;
            }
        }
    }

    /**
     * 改进的插入排序2
     * 总体思想和上面相似,拿无序表头元素从有序表尾元素开始朝前比较,
     * 如果a[i]比a[i-1]小,则把a[i]从有序表尾用冒泡交换的方式朝前移动,直到到达恰当的位置;
     */
    public static void insertSortAdvanced2(int[] a){
        //遍历无序表
        for(int i=1; i<a.length; i++){
            //拿a[i]从有序表尾开始冒泡;
            for(int j=i-1; j>=0 && a[j] > a[j+1]; j--){//a[j+1]就是a[i]
                int tmp = a[j];
                a[j] = a[j+1];
                a[j+1] = tmp;
            }
        }
    }
    /**
     * 快速排序<br>
     * 算法的思想在于分而治之:先找一个元素(一般来说都是数组头元素),把比它大的都放到右边,把比它小的都放到左边;<br>
     * 然后再按照这样的思想去处理两个子数组; 下面说的子数组头元素通指用来划分数组的元素;<br>
     * <br>
     * 下面程序关键点就在于!forward, low0++, high0--这些运算; 这三个运算使得a[low0],a[high0]里面总有一个指向子数组头元素; <br>   
     * 可以用极端的情况来方便理解这三个值的运作: <br>
     * 假如我的数列为0123456789, 初始时forward=false,0作为子数组划分依据,很显然第一轮的时候不会发生任何交换,low0一直指向0,<br>
     * high0逐渐下降直到它指向0为止; 同理可思考9876543210这个例子;<br>
     * <br>
     * @param a 待排序数组<br>
     * @param low 子数组开始的下标;<br>
     * @param high 子数组结束的下标;<br>
     */
    public static void quickSort(int[] a, int low, int high){
        if(low>=high){
            return;
        }
        int low0 = low;
        int high0 = high;
        boolean forward = false;
        while(low0!=high0){
            if(a[low0]>a[high0]){
                int tmp = a[low0];
                a[low0] = a[high0];
                a[high0] = tmp;
                forward = !forward;
            }
            if(forward){
                low0++;
            }
            else{
                high0--;
            }
        }
        low0--;
        high0++;
        quickSort(a, low, low0);
        quickSort(a, high0, high);
    }

    /**
     * 快速排序的简单调用形式<br>
     * 方便测试和调用<br>
     * @param a
     */
    public static void quickSort(int[] a){
     quickSort(a, 0, a.length-1);
    }

    /**
     * 归并排序<br>
     * 所谓归并,就是合并两个有序数组;归并排序也用了分而治之的思想,把一个数组分为若干个子数组;<br>
     * 当子数组的长度为1的时候,则子数组是有序的,于是就可以两两归并了;<br>
     * <br>
     * 由于归并排序需要分配空间来转储归并的结果,为了算法上的方便,归并算法的结果以返回值的形式出现;<br>
     */

    /**
     * 合并两个有序数组
     * @param a 有序数组1
     * @param b 有序数组2
     * @return 合并之后的有序数组;
     */
    public static int[] merge(int[] a, int[] b){
     int result[] = new int[a.length+b.length];
     int i=0,j=0,k=0;
     while(i<a.length&&j<b.length){
      if(a[i]<b[j]){
       result[k++] = a[i];
       i++;
      }
      else{
       result[k++] = b[j];
       j++;
      }
     }
     while(i<a.length){
      result[k++] = a[i++];
     }
     while(j<b.length){
      result[k++] = b[j++];
     }
     return result;
    }

    /**
     * 归并排序<br>
     * 把数组从中间一分为二,并对左右两部分递归调用,直到数组长度为1的时候,开始两两归并;<br>
     * @param 待排序数组;
     * @return 有序数组;
     */
    public static int[] mergeSort(int[] a){
     if(a.length==1){
      return a;
     }
     int mid = a.length/2;
     int[] leftPart = new int[mid];
     int[] rightPart = new int[a.length-mid];
     System.arraycopy(a, 0, leftPart, 0, leftPart.length);
     System.arraycopy(a, mid, rightPart, 0, rightPart.length);
     leftPart = mergeSort(leftPart);
     rightPart = mergeSort(rightPart);
     return merge(leftPart, rightPart);
    }

    /**
     * 选择排序<br>
     * 和插入排序类似,它也把数组分割为有序区和无序区,所不同的是:<br>
     * 插入排序是拿无序区的首元素插入到有序区适当的位置,而<br>
     * 选择排序是从无序区中挑选最小的放到有序区最后;<br>
     * <br>
     * 两层循环,外层控制有序区的队尾,内层用来查找无序区最小元素;<br>
     * @param a
     */
    public static void selectSort(int[] a){
     for(int i=0; i<a.length; i++){
      int minIndex = i;
      for(int j=i+1; j<a.length; j++){
       if(a[j]<a[minIndex]){
        minIndex = j;
       }
      }
      int tmp = a[i];
      a[i] = a[minIndex];
      a[minIndex]= tmp;
     }
    }

    /**
     * 希尔排序<br>
     * 其思想是把数组按等步长(/间距)划分为多个子序列,对各个子序列做普通的插入排序,<br>逐次降低步长,直到为1的时候最后再做一次普通的插入排序;
     * 用一个极端的例子作比方,我有数列如下:<br>
     * [1,2,3,4,5,6,7,8,9,10];<br>
     * 初始的时候,步长gap=5;则划分的子数组为[1,6], [2,7], [3,8], [4,9], [5,10];<br>对他们分别排序(当然由于本数组特殊,所以结果是不变的);<br>
     * 然后gap=2=5/2; 子数组为[1,3,5,7,9], [2,4,6,8,10]; <br>
     * 最后gap=1=2/2; 做一次全局排序;<br>
     * <br>
     * 希尔排序克服了插入/冒泡排序的弱点(一次只能把元素移动一个相邻的位置), <br>依靠大步长,可以把元素尽快移动到目标位置(或附近);<br>
     * 希尔排序实际上是插入排序的变种。它适用于:当数组总体有序,个别需要调整的情况;这时候利用插入排序的优势,可以达到O(n)的效率;<br>
     * 影响希尔算法的一个重要的因素是步长选择,一个好步长的优点是:后面的短步长排序不会破坏前面的长步长排序;<br>
     * 怎么理解这种破坏呢?前面的长步长把一个较小的数移到了左面,但是在缩小步长之后有可能又被交换到了右面 (因为它被分到了一个有很多比它更小的组);<br>
     * 关于步长,可以查看http://zh.wikipedia.org上面关于希尔排序的页面;<br>
     * 下面的程序是希尔排序最基础的写法,适合用来理解希尔排序思想;<br>
     */
    public static void shellSort(int[] a){
     // 控制间距;间距逐渐减小,直到为1;
     for(int gap = a.length/2; gap>0; gap/=2){
      // 扫描每个子数组
      for(int i=0; i<gap; i++){
       // 对每个字数组,扫描无序区;注意增量;
       // a[i]是初始有序区;
       for(int j=i+gap; j<a.length; j+=gap){
        // 无序区首元素小于有序区尾元素,说明需要调整
        if(a[j]<a[j-gap]){
         int tmp = a[j];
         int k = j-gap;
         //从有序区尾向前搜索查找适当的位置;
         while(k>=0&&a[k]>tmp){
          a[k+gap] = a[k];
          k-=gap;
         }
         a[k+gap] = tmp;
        }
       }
      }
     }
    }

    /**
     * 改进的希尔排序<br>
     * 改进之处在于:上面的写法用一个for循环来区别对待每个字数组;而实际上是不必要的;<br>
     * a[0,1,...gap-1]作为所有子数组的有序区,a[gap,...n-1]作为所有字数组的无序区;<br>
     * <br>
     * 该改进在时间效率上没有改进;只是让程序看起来更简洁;<br>
     * @param a
     */
    public static void shellSortAdvanced(int[] a){
     // 控制步长
     for(int gap = a.length/2; gap>0; gap/=2){
      // 从无序区开始处理,把多个子数组放在一起处理;
      for(int j=gap; j<a.length; j++){
       // 下面的逻辑和上面是一样的;
       if(a[j]<a[j-gap]){
        int tmp = a[j];
        int k = j-gap;
        while(k>=0&&a[k]>tmp){
         a[k+gap] = a[k];
         k-=gap;
        }
        a[k+gap] = tmp;
       }
      }
     }
    }

    /**
     * 改进的希尔排序2<br>
     * 在吸收shellSortAdvanced思想的基础上,采用insertAdvanced2的做法;<br>即无序区首元素通过朝前冒泡的形式移动的适当的位置;<br>
     * @param a
     */
    public static void shellSortAdvanced2(int[] a){
     for(int gap = a.length/2; gap>0; gap/=2){
      for(int i=gap; i<a.length; i++){
       if(a[i]<a[i-gap]){
        for(int j=i-gap; j>=0&&a[j+gap]>a[j]; j-=gap){
         int tmp = a[j];
         a[j] = a[j+gap];
         a[j+gap] = tmp;
        }
       }
      }
     }
    }

    /**
     * 堆排序<br>
     * 堆的定义:堆是一个完全,或近似完全的二叉树,堆顶元素的值大于左右孩子的值,左右孩子也需要满足这个条件;<br>
     * 按照堆的定义,堆可以是大顶堆(maxHeap),或小顶堆(minHeap);<br>
     * 一般用数组即可模拟二叉树,对于任意元素i,左孩子为2*i+1,右孩子为2*i+2;父节点为(i-1)/2;
     * @param a
     */
    public static void heapSort(int[] a){
     // 先从最后一个非叶子节点往上调整,使满足堆结构;
     for(int i=(a.length-2)/2; i>=0; i--){
      maxHeapAdjust(a, i, a.length);
     }
     // 每次拿最后一个节点和第一个交换,然后调整堆;直到堆顶;
     for(int i=a.length-1; i>0; i--){
      int tmp = a[i]; a[i] = a[0]; a[0] = tmp;
      maxHeapAdjust(a, 0, i);
     }
    }

    /**
     * 调整堆<br>
     * 把以i为跟节点的二叉树调整为堆;<br>
     * 可以这么来思考这个过程:这个完全二叉树就像一个金字塔,塔顶的小元素沿着树结构,往下沉降;<br>
     * 调整的结果是最大的元素在金字塔顶,然后把它从堆中删除(把它交换到堆尾,然后堆收缩一格);<br>
     * 堆排序快的原因就是根据二叉树的特点,一个节点要沉降到合适的位置,只需要logn步;同时前期调整的结果(大小顺序)会被记录下来,从而加快后续的调整;<br>
     * @param a 待排数组
     * @param i 堆顶
     * @param len 堆长度
     */
    public static void maxHeapAdjust(int[] a, int i, int len){
     int tmp = a[i];
     // j是左孩子节点
     int j = i*2+1;
     //
     while(j<len){
      // 从左右孩子中挑选大的
      // j+1是右孩子节点
      if((j+1)<len && a[j+1]>a[j]){
       j++;
      }
      // 找到恰当的位置就不再找
      if(a[j]<tmp){
       break;
      }
      // 否则把较大者沿着树往上移动;
      a[i] = a[j];
      // i指向刚才的较大的孩子;
      i = j;
      // j指向新的左孩子节点;
      j = 2*i + 1;
     }
     // 把要调整的节点值下沉到适当的位置;
     a[i] = tmp;
    }

    /**
     * 二叉树排序<br>
     * 二叉树的定义是嵌套的:<br>节点的值大于左叶子节点的值,小于右叶子节点的值;叶子节点同样满足这个要求;<br>
     * 二叉树的构造过程就是排序的过程:<br>
     * 先构造跟节点,然后调用add方法添加后续节点为跟节点的子孙节点;这个过程也是嵌套的;<br>
     * <br>
     * 中序遍历二叉树即得到有序结果;<br>
     * 二叉树排序用法特殊,使用情形要视情况而定;<br>
     * @param a
     */
    public static void binaryTreeSort(int[] a){
     // 构造一个二叉树节点内部类来实现二叉树排序算法;
     class BinaryNode{
      int value;
      BinaryNode left;
      BinaryNode right;

      public BinaryNode(int value){
       this.value = value;
       this.left = null;
       this.right = null;
      }

      public void add(int value){
       if(value>this.value){
        if(this.right!=null){
         this.right.add(value);
        }
        else{
         this.right = new BinaryNode(value);
        }
       }
       else{
        if(this.left!=null){
         this.left.add(value);
        }
        else{
         this.left = new BinaryNode(value);
        }
       }
      }
      /**
       * 按中序遍历二叉树,就是有序的。
       */
      public void iterate(){
       if(this.left!=null){
        this.left.iterate();
       }
       // 在测试的时候要把输出关掉,以免影响性能;
       // System.out.print(value + ", ");
       if(this.right!=null){
        this.right.iterate();
       }
      }
     }

     BinaryNode root = new BinaryNode(a[0]);
     for(int i=1; i<a.length; i++){
      root.add(a[i]);
     }
     root.iterate();
    }
}

일반적인 Java 정렬 알고리즘 및 성능 테스트 모음과 관련된 더 많은 기사를 보려면 PHP 중국어 웹사이트에 주목하세요!


성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
Java가 크로스 플랫폼 데스크톱 응용 프로그램을 개발하기 위해 인기있는 선택 인 이유는 무엇입니까?Java가 크로스 플랫폼 데스크톱 응용 프로그램을 개발하기 위해 인기있는 선택 인 이유는 무엇입니까?Apr 25, 2025 am 12:23 AM

javaispopularforcross-platformdesktopapplicationsduetoits "writeonce, runanywhere"철학

Java의 플랫폼 별 코드 작성 상황에 대해 토론하십시오.Java의 플랫폼 별 코드 작성 상황에 대해 토론하십시오.Apr 25, 2025 am 12:22 AM

Java에서 플랫폼 별 코드를 작성하는 이유에는 특정 운영 체제 기능에 대한 액세스, 특정 하드웨어와 상호 작용하고 성능 최적화가 포함됩니다. 1) JNA 또는 JNI를 사용하여 Windows 레지스트리에 액세스하십시오. 2) JNI를 통한 Linux 특이 적 하드웨어 드라이버와 상호 작용; 3) 금속을 사용하여 JNI를 통해 MacOS의 게임 성능을 최적화하십시오. 그럼에도 불구하고 플랫폼 별 코드를 작성하면 코드의 이식성에 영향을 미치고 복잡성을 높이며 잠재적으로 성능 오버 헤드 및 보안 위험을 초래할 수 있습니다.

플랫폼 독립성과 관련된 Java 개발의 미래 트렌드는 무엇입니까?플랫폼 독립성과 관련된 Java 개발의 미래 트렌드는 무엇입니까?Apr 25, 2025 am 12:12 AM

Java는 Cloud-Native Applications, Multi-Platform 배포 및 교차 운용성을 통해 플랫폼 독립성을 더욱 향상시킬 것입니다. 1) Cloud Native Applications는 Graalvm 및 Quarkus를 사용하여 시작 속도를 높입니다. 2) Java는 임베디드 장치, 모바일 장치 및 양자 컴퓨터로 확장됩니다. 3) Graalvm을 통해 Java는 Python 및 JavaScript와 같은 언어와 완벽하게 통합되어 언어 교차 수용 가능성을 향상시킵니다.

Java의 강력한 타이핑은 플랫폼 독립성에 어떻게 기여합니까?Java의 강력한 타이핑은 플랫폼 독립성에 어떻게 기여합니까?Apr 25, 2025 am 12:11 AM

Java의 강력한 유형 시스템은 유형 안전, 통합 유형 변환 및 다형성을 통해 플랫폼 독립성을 보장합니다. 1) 유형 안전성 런타임 오류를 피하기 위해 컴파일 시간에 유형 검사를 수행합니다. 2) 통합 유형 변환 규칙은 모든 플랫폼에서 일관성이 있습니다. 3) 다형성 및 인터페이스 메커니즘은 코드가 다른 플랫폼에서 일관되게 행동하게 만듭니다.

JNI (Java Native Interface)가 플랫폼 독립성을 손상시킬 수있는 방법을 설명하십시오.JNI (Java Native Interface)가 플랫폼 독립성을 손상시킬 수있는 방법을 설명하십시오.Apr 25, 2025 am 12:07 AM

JNI는 Java의 플랫폼 독립성을 파괴 할 것입니다. 1) JNI는 특정 플랫폼에 대한 로컬 라이브러리를 요구합니다. 2) 대상 플랫폼에서 로컬 코드를 컴파일하고 연결해야합니다. 3) 운영 체제 또는 JVM의 다른 버전은 다른 로컬 라이브러리 버전을 필요로 할 수 있습니다.

Java의 플랫폼 독립성을 위협하거나 향상시키는 새로운 기술이 있습니까?Java의 플랫폼 독립성을 위협하거나 향상시키는 새로운 기술이 있습니까?Apr 24, 2025 am 12:11 AM

신흥 기술은 위협을 일으키고 Java의 플랫폼 독립성을 향상시킵니다. 1) Docker와 같은 클라우드 컴퓨팅 및 컨테이너화 기술은 Java의 플랫폼 독립성을 향상 시키지만 다양한 클라우드 환경에 적응하도록 최적화되어야합니다. 2) WebAssembly는 Graalvm을 통해 Java 코드를 컴파일하여 플랫폼 독립성을 확장하지만 성능을 위해 다른 언어와 경쟁해야합니다.

JVM의 다른 구현은 무엇이며, 모두 같은 수준의 플랫폼 독립성을 제공합니까?JVM의 다른 구현은 무엇이며, 모두 같은 수준의 플랫폼 독립성을 제공합니까?Apr 24, 2025 am 12:10 AM

다른 JVM 구현은 플랫폼 독립성을 제공 할 수 있지만 성능은 약간 다릅니다. 1. OracleHotspot 및 OpenJDKJVM 플랫폼 독립성에서 유사하게 수행되지만 OpenJDK에는 추가 구성이 필요할 수 있습니다. 2. IBMJ9JVM은 특정 운영 체제에서 최적화를 수행합니다. 3. Graalvm은 여러 언어를 지원하며 추가 구성이 필요합니다. 4. AzulzingJVM에는 특정 플랫폼 조정이 필요합니다.

플랫폼 독립성은 개발 비용과 시간을 어떻게 줄입니까?플랫폼 독립성은 개발 비용과 시간을 어떻게 줄입니까?Apr 24, 2025 am 12:08 AM

플랫폼 독립성은 여러 운영 체제에서 동일한 코드 세트를 실행하여 개발 비용을 줄이고 개발 시간을 단축시킵니다. 구체적으로, 그것은 다음과 같이 나타납니다. 1. 개발 시간을 줄이면 하나의 코드 세트 만 필요합니다. 2. 유지 보수 비용을 줄이고 테스트 프로세스를 통합합니다. 3. 배포 프로세스를 단순화하기위한 빠른 반복 및 팀 협업.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

Eclipse용 SAP NetWeaver 서버 어댑터

Eclipse용 SAP NetWeaver 서버 어댑터

Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

SublimeText3 Linux 새 버전

SublimeText3 Linux 새 버전

SublimeText3 Linux 최신 버전

에디트플러스 중국어 크랙 버전

에디트플러스 중국어 크랙 버전

작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음