JavaScript에는 &, |, ^, ~, >, >>> 등 7개의 비트 연산자가 있습니다(C#에는 이 연산자가 없지만 C#에서는 >> ; 이 연산을 구현하기 위한 논리적 오른쪽 시프트), 비트 연산은 모두 이진수로 수행됩니다.
비트 AND 연산자(&)
두 숫자의 동일한 비트가 1이면 1을 반환하고 그렇지 않으면 0을 반환합니다. 예를 들어 1&2=0이면 1의 이진 표현은 0001입니다. 2 의 이진수 표현은 0010이고, 둘 사이의 연산은 0000을 반환합니다.
비트 OR 연산자(|)
두 숫자의 자릿수가 동일하지만 자릿수가 다른 경우 1을 반환하고, 그렇지 않으면 0을 반환합니다(예: 1|2=3).
비트 XOR 연산자(^)
두 숫자 중 동일한 비트가 하나만 있으면 1을 반환하고, 그렇지 않으면 0을 반환합니다(예: 1^2=3).
비트 NOT 연산자(~)
~는 모든 비트를 부정하는 단항 연산자입니다. 우선, 음수 저장에 대해 이야기해야 합니다. 따라서 음수에 대한 연산을 수행할 때 음수, 즉 2의 보수를 올바르게 얻어야 합니다. 양수 코드를 보완합니다. 보수는 반전한 후 1을 더함으로써 구현됩니다. 아래 예를 살펴보겠습니다.
먼저 3의 보수를 계산합니다. 3의 이진 형식은 00000011, 보수는 11111100, 보수는 11111101입니다. so -3 의 이진 코드는 11111101이고, 그 보수인 00000010을 취하려면 ~-3이 필요합니다. 이것은 -3의 보수이고 이를 10진수 2로 변환합니다.
몇 번 더 시도해 보면 숫자의 보수가 실제로는 1의 반대쪽인 소수점임을 알 수 있습니다.
왼쪽 시프트 연산자(
왼쪽 시프트 연산자는 숫자의 모든 비트를 일괄적으로 왼쪽으로 시프트하며, 첫 번째 비트가 두 번째 비트가 되고 두 번째 비트가 됩니다. 3위가 됩니다. . . 비어있는 새 비트는 0으로 채워집니다. 예를 들어, 1
여기서 왼쪽 시프트 연산은 십진수에 2의 거듭제곱을 곱하는 것임을 알 수 있습니다.
부호 오른쪽 쉬프트 연산자(>>)
왼쪽 쉬프트는 2를 곱하므로 오른쪽 쉬프트는 2로 나누어야 합니다. 실제로는 다음과 같은 경우입니다. 숫자 자체가 양수이면 상위 비트에 0이 추가되고, 음수이면 상위 비트에 1이 추가됩니다. 예를 들어, 3 > 인코딩은 1111 1101입니다. 1111 1110을 얻으려면 1비트를 오른쪽으로 이동하십시오. 이것은 음수입니다. 먼저 1을 빼서 1111 1101을 얻습니다. 0010이면 -2가 됩니다.
부호 오른쪽 시프트 연산은 소수를 2의 거듭제곱으로 나누고 나머지를 버리는 것입니다.
부호 없는 오른쪽 시프트 연산자(>>>)
양수의 부호 없는 오른쪽 시프트 연산 결과는 부호 있는 오른쪽 시프트 연산과 동일하며 주로 음수입니다. 오른쪽 쉬프트 연산. 부호 있는 오른쪽 쉬프트와 다른 점은 양수이든 음수이든 상위 비트에 0을 추가하므로 양수의 경우 부호 있는 연산과 부호 없는 연산이 동일하지만 음수의 경우에는 차이의 세계. 예: -1 > 1111 1111 1111 1111 1111 1111 1111, 첫 번째 숫자는 0이며 이를 십진수로 변환하면 230+229+...+20=230(1-1/231)입니다. /(1-1/2)=231 -1=2147483647, 마침내 필요한 결과를 얻었습니다. 결과가 끔찍하므로 주의해서 사용하세요.
비트 연산자의 적용:
오랫동안 이야기한 결과, 궁극적인 목표는 이러한 연산자를 사용하는 것입니다. 몇 가지 예를 살펴보겠습니다.
RGB 값 color 및 16진수 변환: 예를 들어 색상 값: #33cc10, 처음 두 자리는 빨간색(R), 가운데 두 자리는 녹색(G), 마지막 두 자리는 파란색(B)으로 변환합니다. 다음과 같은 이진 인코딩: 0011 0011 1100 1100 0001 0000(색상에 할당됨) 먼저 빨간색 값을 가져와야 합니다. 이 값은 color>>16만큼 오른쪽으로 이동해야 하며 이는 0000 0000 0000 0000 0011 0011입니다. 이런 방식으로 R=51을 얻은 다음 녹색 값을 얻으려면 8비트(color>>8)만큼 오른쪽으로 이동하여 0000 0000 0011 0011 1100 1100을 얻은 다음 첫 번째 값을 변경해야 합니다. 8비트를 0, 0000 0000 0011 0011 1100 1100|0000 0000 0000 0000 1111 1111로 변환하면 0000 0000 0000 0000 1100 1100이 됩니다. 이런 식으로 G=204를 얻고 마지막으로 파란색 값을 취합니다. 는 처음 8자리를 0으로, 색상 | 0000 0000 0000 0000 0001 0000, B =16, #33cc10을 RGB 값으로 변환하면 (51,204,16)입니다. 반면에 RGB를 16진수로 변환하는 것은 정확히 반대 방법입니다. 즉, G
한 노드가 다른 노드의 상위 노드인지 확인: 예를 들어 두 개의 노드 a와 b가 있습니다. 즉, a가 b의 하위 노드인지 확인하는 방법은 a.contains(b)이고 다른 노드는 다음과 같습니다. 최신 브라우저에서는 a.compareDocumentPosition(b) 메서드를 사용합니다. 이 반환 결과는 부울 값이 아닙니다. a와 b가 동일한 노드인 경우 0을 반환합니다. a와 b가 다른 문서에 있거나 둘 중 하나 이상이 문서 외부에서는 1을 반환합니다. , b가 a 앞에 있으면 2를 반환하고, a가 b 앞에 있으면 4를 반환하고, b에 a가 포함되어 있으면 8을 반환하고, a에 b가 포함되어 있으면 16을 반환하고, 32는 다음과 같습니다. 브라우저 전용입니다. 0, 1, 2, 4, 8, 16의 바이너리 코드는 각각 0000 0000, 0000 0001, 0000 0010, 0000 0100, 0000 1000, 0001 0000입니다. a.compareDocumentPosition(b) & 16이 변환되는지 확인할 수 있습니다. a가 b의 노드인지 확인하기 위해 True 또는 false로 변환한 다음 a.compareDocumentPosition(b) == 16을 사용하여 확인하는 것은 어떨까요? a.compareDocumentPosition(b)는 20(4+ 16)을 반환해야 하므로 a.compareDocumentPosition(b) == 20을 사용하여 작동할 수 있습니다. & 연산자를 사용하면 이러한 점을 고려할 필요가 없습니다. 필요한 값이 16인 & 연산이 true를 반환할 수 있는지 고려하세요. (John Resig는 CompareDocumentPosition을 시뮬레이션하는 방법을 가지고 있으므로 IE에서도 적용 가능합니다. 관심 있는 분은 기사 마지막에 있는 링크를 참고하시면 됩니다~)
비트별 왼쪽 쉬프트 연산: 우리는 1비트씩 왼쪽으로 시프트하는 것이 2를 곱하는 것임을 안다면 a*2 대신 a
비트 오른쪽 시프트: 한편으로는 a>>1을 사용하여 a/2를 대체할 수 있습니다. 또한 비트 오른쪽 시프트를 사용하면 소수를 3.1415>>0과 같은 정수로 쉽게 변환할 수 있습니다. =3, 비트 시프트 연산에는 피연산자가 정수여야 하므로(자세한 내용은 ECMA-262 매뉴얼 참조) 연산 후 소수점 이하 자릿수는 버려집니다~
참고: 비트 연산자에는 숫자 피연산자는 정수이고, 이러한 피연산자는 32비트 정수로 표시되며 32번째 비트는 부호 비트입니다. 또한 피연산자는 32비트 정수 범위로 제한되며 오른쪽 피연산자는 0에서 31 사이여야 합니다. (본 글의 바이너리 인코딩은 표준화된 것이 아니며 편의를 위한 것입니다~)

웹 개발에서 JavaScript의 주요 용도에는 클라이언트 상호 작용, 양식 검증 및 비동기 통신이 포함됩니다. 1) DOM 운영을 통한 동적 컨텐츠 업데이트 및 사용자 상호 작용; 2) 사용자가 사용자 경험을 향상시키기 위해 데이터를 제출하기 전에 클라이언트 확인이 수행됩니다. 3) 서버와의 진실한 통신은 Ajax 기술을 통해 달성됩니다.

보다 효율적인 코드를 작성하고 성능 병목 현상 및 최적화 전략을 이해하는 데 도움이되기 때문에 JavaScript 엔진이 내부적으로 작동하는 방식을 이해하는 것은 개발자에게 중요합니다. 1) 엔진의 워크 플로에는 구문 분석, 컴파일 및 실행; 2) 실행 프로세스 중에 엔진은 인라인 캐시 및 숨겨진 클래스와 같은 동적 최적화를 수행합니다. 3) 모범 사례에는 글로벌 변수를 피하고 루프 최적화, Const 및 Lets 사용 및 과도한 폐쇄 사용을 피하는 것이 포함됩니다.

Python은 부드러운 학습 곡선과 간결한 구문으로 초보자에게 더 적합합니다. JavaScript는 가파른 학습 곡선과 유연한 구문으로 프론트 엔드 개발에 적합합니다. 1. Python Syntax는 직관적이며 데이터 과학 및 백엔드 개발에 적합합니다. 2. JavaScript는 유연하며 프론트 엔드 및 서버 측 프로그래밍에서 널리 사용됩니다.

Python과 JavaScript는 커뮤니티, 라이브러리 및 리소스 측면에서 고유 한 장점과 단점이 있습니다. 1) Python 커뮤니티는 친절하고 초보자에게 적합하지만 프론트 엔드 개발 리소스는 JavaScript만큼 풍부하지 않습니다. 2) Python은 데이터 과학 및 기계 학습 라이브러리에서 강력하며 JavaScript는 프론트 엔드 개발 라이브러리 및 프레임 워크에서 더 좋습니다. 3) 둘 다 풍부한 학습 리소스를 가지고 있지만 Python은 공식 문서로 시작하는 데 적합하지만 JavaScript는 MDNWebDocs에서 더 좋습니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

C/C에서 JavaScript로 전환하려면 동적 타이핑, 쓰레기 수집 및 비동기 프로그래밍으로 적응해야합니다. 1) C/C는 수동 메모리 관리가 필요한 정적으로 입력 한 언어이며 JavaScript는 동적으로 입력하고 쓰레기 수집이 자동으로 처리됩니다. 2) C/C를 기계 코드로 컴파일 해야하는 반면 JavaScript는 해석 된 언어입니다. 3) JavaScript는 폐쇄, 프로토 타입 체인 및 약속과 같은 개념을 소개하여 유연성과 비동기 프로그래밍 기능을 향상시킵니다.

각각의 엔진의 구현 원리 및 최적화 전략이 다르기 때문에 JavaScript 엔진은 JavaScript 코드를 구문 분석하고 실행할 때 다른 영향을 미칩니다. 1. 어휘 분석 : 소스 코드를 어휘 단위로 변환합니다. 2. 문법 분석 : 추상 구문 트리를 생성합니다. 3. 최적화 및 컴파일 : JIT 컴파일러를 통해 기계 코드를 생성합니다. 4. 실행 : 기계 코드를 실행하십시오. V8 엔진은 즉각적인 컴파일 및 숨겨진 클래스를 통해 최적화하여 Spidermonkey는 유형 추론 시스템을 사용하여 동일한 코드에서 성능이 다른 성능을 제공합니다.

실제 세계에서 JavaScript의 응용 프로그램에는 서버 측 프로그래밍, 모바일 애플리케이션 개발 및 사물 인터넷 제어가 포함됩니다. 1. 서버 측 프로그래밍은 Node.js를 통해 실현되며 동시 요청 처리에 적합합니다. 2. 모바일 애플리케이션 개발은 재교육을 통해 수행되며 크로스 플랫폼 배포를 지원합니다. 3. Johnny-Five 라이브러리를 통한 IoT 장치 제어에 사용되며 하드웨어 상호 작용에 적합합니다.

일상적인 기술 도구를 사용하여 기능적 다중 테넌트 SaaS 응용 프로그램 (Edtech 앱)을 구축했으며 동일한 작업을 수행 할 수 있습니다. 먼저, 다중 테넌트 SaaS 응용 프로그램은 무엇입니까? 멀티 테넌트 SAAS 응용 프로그램은 노래에서 여러 고객에게 서비스를 제공 할 수 있습니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

WebStorm Mac 버전
유용한 JavaScript 개발 도구

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.
