개요
Nginx의 초기 시작 프로세스 중에 worker 작업자 프로세스는 이벤트 모듈의 ngx_event_process_init 메서드를 호출합니다. 각 리스너 소켓 ngx_listening_t은 ngx_connection_t 연결을 할당하고 연결에 대한 읽기 이벤트에 대한 콜백 메소드를 설정합니다.
handler는 ngx_event_accept이고 읽기 이벤트는 epoll 이벤트 메커니즘에 마운트되어 이 시점에서 읽기 가능한 이벤트가 수신 소켓 연결에서 발생할 때까지 기다립니다. ,
요청 메시지 수신
HTTP 요청을 수신하기 전에 성공적으로 설정된 연결이 먼저 초기화됩니다. ngx_http_init_connection 이 함수의 기능은 읽기 및 쓰기 이벤트에 대한 콜백 메소드를 설정하는 것입니다. 실제로 쓰기 이벤트에 대한 콜백 메소드는 HTTP 요청 과정.
함수 실행 흐름: 현재 연결
핸들러- 에서 이벤트를 쓰기 위한 콜백 메서드 설정
- ngx_http_empty_handler(실제로 이 메소드는 어떤 작업도 수행하지 않음) 현재 연결 읽기 이벤트 handler 의 콜백 메소드를
- ngx_http_wait_request_handler로 설정합니다. ;현재 연결의 읽기 이벤트가 준비되었는지 확인합니다(예: ready 플래그가 1임).
-
읽기 이벤트 ready
- 플래그가 1이면 현재 연결에 읽기 가능한
- TCP 스트림이 있음을 나타내며 읽기 이벤트의 콜백 메서드가 실행됩니다. . ngx_http_wait_request_handler; 읽기 이벤트 ready 플래그가 0이면 현재 연결에 읽을 수 있는
- TCP 스트림이 없음을 나타냅니다. 타이머 이벤트 메커니즘에 추가하고(읽기 가능한 이벤트가 시간 초과되었는지 모니터링) 읽기 이벤트를 epoll 이벤트 메커니즘에 등록하고 읽기 가능한 이벤트가 발생할 때까지 기다립니다. >함수 ngx_http_init_connection
src/http/ngx_http_request.c
연결을 처음으로 읽을 수 있습니다. 이벤트가 발생하면 ngx_http_wait_request_handler 함수가 호출됩니다. 이 함수의 기능은
HTTPvoid ngx_http_init_connection(ngx_connection_t *c) { ngx_uint_t i; ngx_event_t *rev; struct sockaddr_in *sin; ngx_http_port_t *port; ngx_http_in_addr_t *addr; ngx_http_log_ctx_t *ctx; ngx_http_connection_t *hc; #if (NGX_HAVE_INET6) struct sockaddr_in6 *sin6; ngx_http_in6_addr_t *addr6; #endif /* 分配http连接ngx_http_connection_t结构体空间 */ hc = ngx_pcalloc(c->pool, sizeof(ngx_http_connection_t)); if (hc == NULL) { ngx_http_close_connection(c); return; } c->data = hc; /* find the server configuration for the address:port */ port = c->listening->servers; if (port->naddrs > 1) { /* * there are several addresses on this port and one of them * is an "*:port" wildcard so getsockname() in ngx_http_server_addr() * is required to determine a server address */ if (ngx_connection_local_sockaddr(c, NULL, 0) != NGX_OK) { ngx_http_close_connection(c); return; } switch (c->local_sockaddr->sa_family) { #if (NGX_HAVE_INET6) ... #endif default: /* AF_INET */ sin = (struct sockaddr_in *) c->local_sockaddr; addr = port->addrs; /* the last address is "*" */ for (i = 0; i naddrs - 1; i++) { if (addr[i].addr == sin->sin_addr.s_addr) { break; } } hc->addr_conf = &addr[i].conf; break; } } else { switch (c->local_sockaddr->sa_family) { #if (NGX_HAVE_INET6) ... #endif default: /* AF_INET */ addr = port->addrs; hc->addr_conf = &addr[0].conf; break; } } /* the default server configuration for the address:port */ hc->conf_ctx = hc->addr_conf->default_server->ctx; ctx = ngx_palloc(c->pool, sizeof(ngx_http_log_ctx_t)); if (ctx == NULL) { ngx_http_close_connection(c); return; } ctx->connection = c; ctx->request = NULL; ctx->current_request = NULL; /* 设置当前连接的日志属性 */ c->log->connection = c->number; c->log->handler = ngx_http_log_error; c->log->data = ctx; c->log->action = "waiting for request"; c->log_error = NGX_ERROR_INFO; /* 设置当前连接读、写事件的handler处理方法 */ rev = c->read; /* 设置当前连接读事件的处理方法handler为ngx_http_wait_request_handler */ rev->handler = ngx_http_wait_request_handler; /* * 设置当前连接写事件的处理方法handler为ngx_http_empty_handler, * 该方法不执行任何实际操作,只记录日志; * 因为处理请求的过程不需要write方法; */ c->write->handler = ngx_http_empty_handler; #if (NGX_HTTP_SPDY) ... #endif #if (NGX_HTTP_SSL) ... #endif if (hc->addr_conf->proxy_protocol) { hc->proxy_protocol = 1; c->log->action = "reading PROXY protocol"; } /* 若读事件准备就绪,则判断是否使用同步锁, * 根据同步锁情况判断决定是否立即处理该事件; */ if (rev->ready) { /* the deferred accept(), rtsig, aio, iocp */ /* * 若使用了同步锁ngx_use_accept_mutex, * 则将该读事件添加到待处理事件队列ngx_post_event中, * 直到退出锁时,才处理该读事件; */ if (ngx_use_accept_mutex) { ngx_post_event(rev, &ngx_posted_events); return; } /* 若没有使用同步锁,则直接处理该读事件; * 读事件的处理函数handler为ngx_http_wait_request_handler; */ rev->handler(rev); return; } /* * 若当前连接的读事件未准备就绪, * 则将其添加到定时器事件机制,并注册到epoll事件机制中; */ /* 将当前连接的读事件添加到定时器机制中 */ ngx_add_timer(rev, c->listening->post_accept_timeout); ngx_reusable_connection(c, 1); /* 将当前连接的读事件注册到epoll事件机制中 */ if (ngx_handle_read_event(rev, 0) != NGX_OK) { ngx_http_close_connection(c); return; } }요청을 초기화하는 것입니다. 대신, 현재 연결이 성공한 후에 요청을 초기화합니다. 실제 초기화 작업은 클라이언트의 실제 요청 데이터가 해당 소켓에 수신된 것으로 확인된 경우에만 수행됩니다. 이는 불필요한 메모리 소모를 줄일 수 있습니다(클라이언트가 연결 성공 후 실제 데이터 통신을 수행하지 않는 경우, 이때
Nginx는 초기화 작업으로 인해 메모리를 할당합니다).
- 首先判断当前读事件是否超时(即读事件的 timedout 标志位是否为1):
- 若 timedout 标志位为1,表示当前读事件已经超时,则调用ngx_http_close_connection 方法关闭当前连接,return 从当前函数返回;
- 若 timedout 标志位为0,表示当前读事件还未超时,则继续检查当前连接的close标志位;
- 若当前连接的 close 标志位为1,表示当前连接要关闭,则调用ngx_http_close_connection 方法关闭当前连接,return 从当前函数返回;
- 若当前连接的 close 标志位为0,表示不需要关闭当前连接,进而调用recv() 函数尝试从当前连接所对应的套接字缓冲区中接收数据,这个步骤是为了确定客户端是否真正的发送请求数据,以免因为客户端不发送实际请求数据,出现初始化请求而导致内存被消耗。根据所读取的数据情况n 来判断是否要真正进行初始化请求工作:
- 若 n = NGX_AGAIN,表示客户端发起连接请求,但是暂时还没发送实际的数据,则将当前连接上的读事件添加到定时器机制中,同时将读事件注册到epoll 事件机制中,return 从当前函数返回;
- 若 n = NGX_ERROR,表示当前连接出错,则直接调用ngx_http_close_connection 关闭当前连接,return 从当前函数返回;
- 若 n = 0,表示客户端已经主动关闭当前连接,所有服务器端调用ngx_http_close_connection 关闭当前连接,return 从当前函数返回;
- 若 n 大于 0,表示读取到实际的请求数据,因此决定开始初始化当前请求,继续往下执行;
- 调用 ngx_http_create_request 方法构造ngx_http_request_t 请求结构体,并设置到当前连接的data 成员;
- 设置当前读事件的回调方法为 ngx_http_process_request_line,并执行该回调方法开始接收并解析请求行;
函数 ngx_http_wait_request_handler 在文件src/http/ngx_http_request.c 中定义如下:
/* 处理连接的可读事件 */ static void ngx_http_wait_request_handler(ngx_event_t *rev) { u_char *p; size_t size; ssize_t n; ngx_buf_t *b; ngx_connection_t *c; ngx_http_connection_t *hc; ngx_http_core_srv_conf_t *cscf; /* 获取读事件所对应的连接ngx_connection_t 对象 */ c = rev->data; ngx_log_debug0(NGX_LOG_DEBUG_HTTP, c->log, 0, "http wait request handler"); /* 若当前读事件超时,则记录错误日志,关闭所对应的连接并退出 */ if (rev->timedout) { ngx_log_error(NGX_LOG_INFO, c->log, NGX_ETIMEDOUT, "client timed out"); ngx_http_close_connection(c); return; } /* 若当前读事件所对应的连接设置关闭连接标志位,则关闭该链接 */ if (c->close) { ngx_http_close_connection(c); return; } /* 若当前读事件不超时,且其所对应的连接不设置close标志位,则继续指向以下语句 */ hc = c->data; /* 获取当前读事件请求的相关配置项结构 */ cscf = ngx_http_get_module_srv_conf(hc->conf_ctx, ngx_http_core_module); size = cscf->client_header_buffer_size; /* 以下内容是接收缓冲区的操作 */ b = c->buffer; /* 若当前连接的接收缓冲区不存在,则创建该接收缓冲区 */ if (b == NULL) { b = ngx_create_temp_buf(c->pool, size); if (b == NULL) { ngx_http_close_connection(c); return; } c->buffer = b; } else if (b->start == NULL) { /* 若当前接收缓冲区存在,但是为空,则为其分配内存 */ b->start = ngx_palloc(c->pool, size); if (b->start == NULL) { ngx_http_close_connection(c); return; } /* 初始化接收缓冲区各成员指针 */ b->pos = b->start; b->last = b->start; b->end = b->last + size; } /* 在当前连接上开始接收HTTP请求数据 */ n = c->recv(c, b->last, size); if (n == NGX_AGAIN) { if (!rev->timer_set) { ngx_add_timer(rev, c->listening->post_accept_timeout); ngx_reusable_connection(c, 1); } if (ngx_handle_read_event(rev, 0) != NGX_OK) { ngx_http_close_connection(c); return; } /* * We are trying to not hold c->buffer's memory for an idle connection. */ if (ngx_pfree(c->pool, b->start) == NGX_OK) { b->start = NULL; } return; } if (n == NGX_ERROR) { ngx_http_close_connection(c); return; } if (n == 0) { ngx_log_error(NGX_LOG_INFO, c->log, 0, "client closed connection"); ngx_http_close_connection(c); return; } /* 若接收HTTP请求数据成功,则调整接收缓冲区成员指针 */ b->last += n; if (hc->proxy_protocol) { hc->proxy_protocol = 0; p = ngx_proxy_protocol_parse(c, b->pos, b->last); if (p == NULL) { ngx_http_close_connection(c); return; } b->pos = p; if (b->pos == b->last) { c->log->action = "waiting for request"; b->pos = b->start; b->last = b->start; ngx_post_event(rev, &ngx_posted_events); return; } } c->log->action = "reading client request line"; ngx_reusable_connection(c, 0); /* 为当前连接创建一个请求结构体ngx_http_request_t */ c->data = ngx_http_create_request(c); if (c->data == NULL) { ngx_http_close_connection(c); return; } /* 设置当前读事件的处理方法为ngx_http_process_request_line */ rev->handler = ngx_http_process_request_line; /* 执行该读事件的处理方法ngx_http_process_request_line,接收HTTP请求行 */ ngx_http_process_request_line(rev); }
接收 HTTP 请求行
ngx_http_process_request_line 处理
- 首先,判断当前请求是否超时,若超时(即读事件的 timedout 标志位为1),则设置当前连接的超时标志位为 1(c->timedout = 1),调用 ngx_http_close_request 方法关闭该请求,并 return 从当前函数返回;
- 若当前请求未超时(读事件的 timedout 标志位为 0),调用 ngx_http_read_request_header 方法开始读取当前请求行,根据该函数的返回值n 进行以下判断:
- 若返回值 n = NGX_AGAIN,表示当前连接上套接字缓冲区不存在可读TCP 流,则需将当前读事件添加到定时器机制,注册到 epoll 事件机制中,等待可读事件发生。return 从当前函数返回;
- 若返回值 n = NGX_ERROR,表示当前连接出错,则调用ngx_http_finalize_request 方法结束请求,return 从当前函数返回;
- 若返回值 n 大于 0,表示读取请求行成功,调用函数 ngx_http_parse_request_line 开始解析由函数ngx_http_read_request_header 读取所返回的请求行,根据函数ngx_http_parse_request_line 函数返回值rc 不同进行判断;
- 若返回值 rc = NGX_ERROR,表示解析请求行时出错,此时,调用ngx_http_finalize_request 方法终止该请求,并return 从当前函数返回;
- 若返回值 rc = NGX_AGAIN,表示没有解析到完整的请求行,即仍需接收请求行,首先根据要求调整接收缓冲区header_in 的内存空间,则继续调用函数ngx_http_read_request_header 读取请求数据进入请求行自动处理机制,直到请求行解析完毕;
- 若返回值 rc = NGX_OK,表示解析到完整的
HTTP 请求行,则设置请求行的成员信息(例如:方法名称、URI 参数、 HTTP 版本等信息); - 若
HTTP 协议版本小于 1.0 版本,表示不需要处理 HTTP 请求头部,则直接调用函数ngx_http_process_request 处理该请求,return 从当前函数返回; - 若HTTP协议版本不小于 1.0 版本,表示需要处理HTTP请求头部:
- 调用函数 ngx_list_init 初始化保存
HTTP 请求头部的结构体 ngx_http_request_t 中成员headers_in 链表容器(该链表缓冲区是保存所接收到的 HTTP 请求数据); - 设置当前读事件的回调方法为 ngx_http_process_request_headers 方法,并调用该方法ngx_http_process_request_headers 开始处理
HTTP 请求头部。return 从当前函数返回;
- 调用函数 ngx_list_init 初始化保存
- 若
函数 ngx_http_process_request_line 在文件src/http/ngx_http_request.c 中定义如下:
/* 处理HTTP请求行 */ static void ngx_http_process_request_line(ngx_event_t *rev) { ssize_t n; ngx_int_t rc, rv; ngx_str_t host; ngx_connection_t *c; ngx_http_request_t *r; /* 获取当前读事件所对应的连接 */ c = rev->data; /* 获取连接中所对应的请求结构 */ r = c->data; ngx_log_debug0(NGX_LOG_DEBUG_HTTP, rev->log, 0, "http process request line"); /* 若当前读事件超时,则进行相应地处理,并关闭当前请求 */ if (rev->timedout) { ngx_log_error(NGX_LOG_INFO, c->log, NGX_ETIMEDOUT, "client timed out"); c->timedout = 1; ngx_http_close_request(r, NGX_HTTP_REQUEST_TIME_OUT); return; } /* 设置NGX_AGAIN标志,表示请求行还没解析完毕 */ rc = NGX_AGAIN; for ( ;; ) { /* 若请求行还没解析完毕,则继续解析 */ if (rc == NGX_AGAIN) { /* 读取当前请求未解析的数据 */ n = ngx_http_read_request_header(r); /* 若没有数据,或读取失败,则直接退出 */ if (n == NGX_AGAIN || n == NGX_ERROR) { return; } } /* 解析接收缓冲区header_in中的请求行 */ rc = ngx_http_parse_request_line(r, r->header_in); /* 若请求行解析完毕 */ if (rc == NGX_OK) { /* the request line has been parsed successfully */ /* 设置请求行的成员,请求行是ngx_str_t类型 */ r->request_line.len = r->request_end - r->request_start; r->request_line.data = r->request_start; /* 设置请求长度,包括请求头部、请求包体 */ r->request_length = r->header_in->pos - r->request_start; ngx_log_debug1(NGX_LOG_DEBUG_HTTP, c->log, 0, "http request line: \"%V\"", &r->request_line); /* 设置请求方法名称字符串 */ r->method_name.len = r->method_end - r->request_start + 1; r->method_name.data = r->request_line.data; /* 设置HTTP请求协议 */ if (r->http_protocol.data) { r->http_protocol.len = r->request_end - r->http_protocol.data; } /* 处理请求中的URI */ if (ngx_http_process_request_uri(r) != NGX_OK) { return; } if (r->host_start && r->host_end) { host.len = r->host_end - r->host_start; host.data = r->host_start; rc = ngx_http_validate_host(&host, r->pool, 0); if (rc == NGX_DECLINED) { ngx_log_error(NGX_LOG_INFO, c->log, 0, "client sent invalid host in request line"); ngx_http_finalize_request(r, NGX_HTTP_BAD_REQUEST); return; } if (rc == NGX_ERROR) { ngx_http_close_request(r, NGX_HTTP_INTERNAL_SERVER_ERROR); return; } if (ngx_http_set_virtual_server(r, &host) == NGX_ERROR) { return; } r->headers_in.server = host; } /* 设置请求协议版本 */ if (r->http_version headers_in.server.len == 0 && ngx_http_set_virtual_server(r, &r->headers_in.server) == NGX_ERROR) { return; } /* 若HTTP版本小于1.0版本,则表示不需要接收HTTP请求头部,则直接处理请求 */ ngx_http_process_request(r); return; } /* 初始化链表容器,为接收HTTP请求头部做准备 */ if (ngx_list_init(&r->headers_in.headers, r->pool, 20, sizeof(ngx_table_elt_t)) != NGX_OK) { ngx_http_close_request(r, NGX_HTTP_INTERNAL_SERVER_ERROR); return; } c->log->action = "reading client request headers"; /* 若请求行解析完毕,则接下来处理请求头部 */ /* 设置连接读事件的回调方法 */ rev->handler = ngx_http_process_request_headers; /* 开始处理HTTP请求头部 */ ngx_http_process_request_headers(rev); return; } /* 解析请求行出错 */ if (rc != NGX_AGAIN) { /* there was error while a request line parsing */ ngx_log_error(NGX_LOG_INFO, c->log, 0, ngx_http_client_errors[rc - NGX_HTTP_CLIENT_ERROR]); ngx_http_finalize_request(r, NGX_HTTP_BAD_REQUEST); return; } /* NGX_AGAIN: a request line parsing is still incomplete */ /* 请求行仍然未解析完毕,则继续读取请求数据 */ /* 若当前接收缓冲区内存不够,则分配更大的内存空间 */ if (r->header_in->pos == r->header_in->end) { rv = ngx_http_alloc_large_header_buffer(r, 1); if (rv == NGX_ERROR) { ngx_http_close_request(r, NGX_HTTP_INTERNAL_SERVER_ERROR); return; } if (rv == NGX_DECLINED) { r->request_line.len = r->header_in->end - r->request_start; r->request_line.data = r->request_start; ngx_log_error(NGX_LOG_INFO, c->log, 0, "client sent too long URI"); ngx_http_finalize_request(r, NGX_HTTP_REQUEST_URI_TOO_LARGE); return; } } } }
在接收并解析请求行的过程中会调用 ngx_http_read_request_header 读取请求数据,我们看下该函数是如何读取到请求数据的。
ngx_http_read_request_header 读取请求数据函数执行流程:
- 检测当前请求的接收缓冲区 header_in 是否有数据,若有直接返回该数据n;
- 若接收缓冲区 header_in 没有数据,检查当前读事件是否准备就绪(即判断ready 标志位是否为
0 ):
- 若当前读事件未准备就绪(即当前读事件 ready 标志位为0),则设置返回值 n= NGX_AGAIN;
- 若当前读事件已经准备就绪(即 ready 标志位为 1),则调用 recv() 方法从当前连接套接字中读取数据并保存到接收缓冲区header_in 中,并设置 n 为 recv() 方法所读取的数据的返回值;
- 下面根据 n 的取值执行不同的操作:
- 若 n = NGX_AGAIN(此时,n 的值可能当前事件未准备就绪而设置的NGX_AGAIN,也可能是 recv() 方法返回的 NGX_AGAIN 值,但是只能是其中一种情况),将当前读事件添加到定时器事件机制中, 将当前读事件注册到epoll 事件机制中,等待事件可读,n 从当前函数返回;
- 若 n = 0 或 n = ERROR,则调用 ngx_http_finalize_request 结束请求,并返回NGX_ERROR 退出当前函数;
函数 ngx_http_read_request_header 在文件src/http/ngx_http_request.c 中定义如下:
static ssize_t ngx_http_read_request_header(ngx_http_request_t *r) { ssize_t n; ngx_event_t *rev; ngx_connection_t *c; ngx_http_core_srv_conf_t *cscf; /* 获取当前请求所对应的连接 */ c = r->connection; /* 获取当前连接的读事件 */ rev = c->read; /* 获取当前请求接收缓冲区的数据,header_in 是ngx_buf_t类型 */ n = r->header_in->last - r->header_in->pos; /* 若接收缓冲区有数据,则直接返回该数据 */ if (n > 0) { return n; } /* 若当前接收缓冲区没有数据,首先判断当前读事件是否准备就绪 */ if (rev->ready) { /* 若当前读事件已准备就绪,则从其所对应的连接套接字读取数据,并保存到接收缓冲区中 */ n = c->recv(c, r->header_in->last, r->header_in->end - r->header_in->last); } else { /* 若接收缓冲区没有数据,且读事件未准备就绪,则设置为NGX_AGAIN */ n = NGX_AGAIN; } /* 若接收缓冲区没有数据,且读事件未准备就绪,则设置为NGX_AGAIN */ /* 将当前读事件添加到定时器机制; * 将当前读事件注册到epoll事件机制; */ if (n == NGX_AGAIN) { if (!rev->timer_set) { cscf = ngx_http_get_module_srv_conf(r, ngx_http_core_module); /* 将当前读事件添加到定时器机制中 */ ngx_add_timer(rev, cscf->client_header_timeout); } /* 将当前读事件注册到epoll事件机制中 */ if (ngx_handle_read_event(rev, 0) != NGX_OK) { ngx_http_close_request(r, NGX_HTTP_INTERNAL_SERVER_ERROR); return NGX_ERROR; } return NGX_AGAIN; } if (n == 0) { ngx_log_error(NGX_LOG_INFO, c->log, 0, "client prematurely closed connection"); } if (n == 0 || n == NGX_ERROR) { c->error = 1; c->log->action = "reading client request headers"; ngx_http_finalize_request(r, NGX_HTTP_BAD_REQUEST); return NGX_ERROR; } r->header_in->last += n; return n; }
接收 HTTP 请求头部
前面已经成功接收并解析了
ngx_http_process_request_headers 处理
- 首先,判断当前请求读事件是否超时,若超时(即读事件的 timedout 标志位为1),则设置当前连接超时标志位为 1(c->timedout = 1),并调用 ngx_http_close_request 方法关闭该请求,并 return 从当前函数返回;
- 若当前请求读事件未超时(即读事件的 timedout 标志位为0),检查接收
HTTP 请求头部的 header_in 缓冲区是否有剩余内存空间,若没有剩余的内存空间,则调用ngx_http_alloc_large_header_buffer 方法分配更大的缓冲区。若有剩余的内存,则无需再分配内存空间。 - 调用 ngx_http_read_request_header 方法开始读取当前请求头部保存到header_in 缓冲区中,根据该函数的返回值 n 进行以下判断:
- 若返回值 n = NGX_AGAIN,表示当前连接上套接字缓冲区不存在可读TCP 流,则需将当前读事件添加到定时器机制,注册到 epoll 事件机制中,等待可读事件发生。return 从当前函数返回;
- 若返回值 n = NGX_ERROR,表示当前连接出错,则调用ngx_http_finalize_request 方法结束请求,return 从当前函数返回;
- 若返回值 n 大于 0,表示读取请求头部成功,调用函数 ngx_http_parse_request_line 开始解析由函数ngx_http_read_request_header 读取所返回的请求头部,根据函数ngx_http_parse_request_line 函数返回值rc不同进行判断;
- 若返回值 rc = NGX_ERROR,表示解析请求行时出错,此时,调用ngx_http_finalize_request 方法终止该请求,并return 从当前函数返回;
- 若返回值 rc = NGX_AGAIN,表示没有解析到完整一行的请求头部,仍需继续接收TCP 字符流才能够是完整一行的请求头部,则 continue 继续调用函数ngx_http_read_request_header 和ngx_http_parse_request_line 方法读取并解析下一行请求头部,直到全部请求头部解析完毕;
- 若返回值 rc = NGX_OK,表示解析出一行
HTTP 请求头部(注意:一行请求头部只是整个请求头部的一部分),判断当前解析出来的一行请求头部是否合法,若非法,则忽略当前一行请求头部,继续读取并解析下一行请求头部。若合法,则调用ngx_list_push 方法将该行请求头部设置到当前请求 ngx_http_request_t 结构体 header_in 缓冲区成员的headers 链表中,设置请求头部名称的 hash 值,并 continue 继续调用函数 ngx_http_read_request_header 和 ngx_http_parse_request_line 方法读取并解析下一行请求头部,直到全部请求头部解析完毕; - 若返回值 rc = NGX_HTTP_PARSE_HEADER_DONE,则表示已经读取并解析出全部请求头部,此时,调用ngx_http_process_request 方法开始处理请求,return 从当前函数返回;
函数 ngx_http_process_request_headers 在文件src/http/ngx_http_request.c 中定义如下:
/* 处理HTTP请求头部 */ static void ngx_http_process_request_headers(ngx_event_t *rev) { u_char *p; size_t len; ssize_t n; ngx_int_t rc, rv; ngx_table_elt_t *h; ngx_connection_t *c; ngx_http_header_t *hh; ngx_http_request_t *r; ngx_http_core_srv_conf_t *cscf; ngx_http_core_main_conf_t *cmcf; /* 获取当前读事件所对应的连接 */ c = rev->data; /* 获取当前连接的HTTP请求 */ r = c->data; ngx_log_debug0(NGX_LOG_DEBUG_HTTP, rev->log, 0, "http process request header line"); /* 若当前读事件超时,则关闭该请求,并退出 */ if (rev->timedout) { ngx_log_error(NGX_LOG_INFO, c->log, NGX_ETIMEDOUT, "client timed out"); c->timedout = 1; ngx_http_close_request(r, NGX_HTTP_REQUEST_TIME_OUT); return; } /* 获取ngx_http_core_module模块的main级别配置项结构 */ cmcf = ngx_http_get_module_main_conf(r, ngx_http_core_module); /* 表示当前请求头部未解析完毕 */ rc = NGX_AGAIN; for ( ;; ) { if (rc == NGX_AGAIN) { /* 若当前请求头部未解析完毕,则首先判断接收缓冲区是否有内存空间再次接收请求数据 */ if (r->header_in->pos == r->header_in->end) { /* 若接收缓冲区没有足够内存空间,则分配更大的内存空间 */ rv = ngx_http_alloc_large_header_buffer(r, 0); if (rv == NGX_ERROR) { ngx_http_close_request(r, NGX_HTTP_INTERNAL_SERVER_ERROR); return; } if (rv == NGX_DECLINED) { p = r->header_name_start; r->lingering_close = 1; if (p == NULL) { ngx_log_error(NGX_LOG_INFO, c->log, 0, "client sent too large request"); ngx_http_finalize_request(r, NGX_HTTP_REQUEST_HEADER_TOO_LARGE); return; } len = r->header_in->end - p; if (len > NGX_MAX_ERROR_STR - 300) { len = NGX_MAX_ERROR_STR - 300; p[len++] = '.'; p[len++] = '.'; p[len++] = '.'; } ngx_log_error(NGX_LOG_INFO, c->log, 0, "client sent too long header line: \"%*s\"", len, r->header_name_start); ngx_http_finalize_request(r, NGX_HTTP_REQUEST_HEADER_TOO_LARGE); return; } } /* 读取未解析请求数据 */ n = ngx_http_read_request_header(r); /* 若没有可读的数据,或读取失败,则直接退出 */ if (n == NGX_AGAIN || n == NGX_ERROR) { return; } } /* the host header could change the server configuration context */ /* 获取ngx_http_core_module模块的srv级别配置项结构 */ cscf = ngx_http_get_module_srv_conf(r, ngx_http_core_module); /* 开始解析HTTP请求头部 */ rc = ngx_http_parse_header_line(r, r->header_in, cscf->underscores_in_headers); /* 解析出一行请求头部(注意:一行请求头部只是HTTP请求头部的一部分) */ if (rc == NGX_OK) { /* 设置当前请求的长度 */ r->request_length += r->header_in->pos - r->header_name_start; /* * 若当前解析出来的一行请求头部是非法的,或Nginx当前版本不支持, * 则记录错误日志,并继续解析下一行请求头部; */ if (r->invalid_header && cscf->ignore_invalid_headers) { /* there was error while a header line parsing */ ngx_log_error(NGX_LOG_INFO, c->log, 0, "client sent invalid header line: \"%*s\"", r->header_end - r->header_name_start, r->header_name_start); continue; } /* a header line has been parsed successfully */ /* * 若当前解析出来的一行请求头部是合法的,表示成功解析出该行请求头部, * 将该行请求头部保存在当前请求的headers_in的headers链表中; * 接着继续解析下一行请求头部; */ h = ngx_list_push(&r->headers_in.headers); if (h == NULL) { ngx_http_close_request(r, NGX_HTTP_INTERNAL_SERVER_ERROR); return; } /* 设置请求头部名称的hash值 */ h->hash = r->header_hash; h->key.len = r->header_name_end - r->header_name_start; h->key.data = r->header_name_start; h->key.data[h->key.len] = '\0'; h->value.len = r->header_end - r->header_start; h->value.data = r->header_start; h->value.data[h->value.len] = '\0'; h->lowcase_key = ngx_pnalloc(r->pool, h->key.len); if (h->lowcase_key == NULL) { ngx_http_close_request(r, NGX_HTTP_INTERNAL_SERVER_ERROR); return; } if (h->key.len == r->lowcase_index) { ngx_memcpy(h->lowcase_key, r->lowcase_header, h->key.len); } else { ngx_strlow(h->lowcase_key, h->key.data, h->key.len); } hh = ngx_hash_find(&cmcf->headers_in_hash, h->hash, h->lowcase_key, h->key.len); if (hh && hh->handler(r, h, hh->offset) != NGX_OK) { return; } ngx_log_debug2(NGX_LOG_DEBUG_HTTP, r->connection->log, 0, "http header: \"%V: %V\"", &h->key, &h->value); continue; } /* 若成功解析所有请求头部,则接下来就开始处理该请求 */ if (rc == NGX_HTTP_PARSE_HEADER_DONE) { /* a whole header has been parsed successfully */ ngx_log_debug0(NGX_LOG_DEBUG_HTTP, r->connection->log, 0, "http header done"); r->request_length += r->header_in->pos - r->header_name_start; /* 设置当前请求的解析状态 */ r->http_state = NGX_HTTP_PROCESS_REQUEST_STATE; /* * 调用该函数主要目的有两个: * 1、根据HTTP头部的host字段,调用ngx_http_find_virtual_server查找虚拟主机的配置块; * 2、对HTTP请求头部协议版本进行检查,例如http1.1版本,host头部不能为空,否则会返回400 Bad Request错误; */ rc = ngx_http_process_request_header(r); if (rc != NGX_OK) { return; } /* 开始处理当前请求 */ ngx_http_process_request(r); return; } /* 表示当前行的请求头部未解析完毕,则继续读取请求数据进行解析 */ if (rc == NGX_AGAIN) { /* a header line parsing is still not complete */ continue; } /* rc == NGX_HTTP_PARSE_INVALID_HEADER: "\r" is not followed by "\n" */ /* 解析请求头部出错,则关闭该请求,并退出 */ ngx_log_error(NGX_LOG_INFO, c->log, 0, "client sent invalid header line: \"%*s\\r...\"", r->header_end - r->header_name_start, r->header_name_start); ngx_http_finalize_request(r, NGX_HTTP_BAD_REQUEST); return; } }
处理 HTTP 请求
前面的步骤已经接收到完整的
ngx_http_process_request 处理
- 若当前读事件在定时器机制中,则调用 ngx_del_timer 函数将其从定时器机制中移除,因为在处理
HTTP 请求时不存在接收 HTTP 请求头部超时的问题; - 由于处理
HTTP 请求不需要再接收 HTTP 请求行或头部,则需重新设置当前连接读、写事件的回调方法,读、写事件的回调方法都设置为 ngx_http_request_handler,即后续处理 HTTP 请求的过程都是通过该方法进行; - 设置当前请求 ngx_http_request_t 结构体中的成员read_event_handler 的回调方法为 ngx_http_block_reading,该回调方法实际不做任何操作,即在处理请求时不会对请求的读事件进行任何处理,除非某个HTTP模块重新设置该回调方法;
- 接下来调用函数 ngx_http_handler 开始处理
HTTP 请求; - 调用函数 ngx_http_run_posted_requests 处理post 子请求;
函数 ngx_http_process_request 在文件src/http/ngx_http_request.c 中定义如下:
/* 处理HTTP请求 */ void ngx_http_process_request(ngx_http_request_t *r) { ngx_connection_t *c; /* 获取当前请求所对应的连接 */ c = r->connection; #if (NGX_HTTP_SSL) ... #endif /* * 由于现在不需要再接收HTTP请求头部超时问题, * 则需要把当前连接的读事件从定时器机制中删除; * timer_set为1表示读事件已添加到定时器机制中, * 则将其从定时器机制中删除,0表示不在定时器机制中; */ if (c->read->timer_set) { ngx_del_timer(c->read); } #if (NGX_STAT_STUB) ... #endif /* 重新设置当前连接的读、写事件的回调方法 */ c->read->handler = ngx_http_request_handler; c->write->handler = ngx_http_request_handler; /* * 设置请求读事件的回调方法, * 其实ngx_http_block_reading函数实际对读事件不做任何处理; * 即在处理请求时,不会对读事件任何操作,除非有HTTP模块重新设置处理方法; */ r->read_event_handler = ngx_http_block_reading; /* 开始处理各个HTTP模块的handler方法,该函数定义于ngx_http_core_module.c中*/ ngx_http_handler(r); /* 处理post请求 */ ngx_http_run_posted_requests(c); }
ngx_http_handler 函数的执行流程:
- 检查当前请求 ngx_http_request_t 的 internal 标志位:
- 若 internal 标志位为 0,表示当前请求不需要重定向,判断是否使用 keepalive 机制,并设置phase_handler 序号为 0,表示执行 ngx_http_phase_engine_t 结构成员ngx_http_phase_handler_t *handlers数组中的第一个回调方法;
- 若 internal 标志位为 1,表示需要将当前请求做内部跳转,并将 phase_handler 设置为server_rewriter_index,表示执行 ngx_http_phase_engine_t 结构成员ngx_http_phase_handler_t *handlers 数组在NGX_HTTP_SERVER_REWRITE_PHASE 处理阶段的第一个回调方法;
- 设置当前请求 ngx_http_request_t 的成员写事件write_event_handler 为 ngx_http_core_run_phases;
- 执行n gx_http_core_run_phases 方法;
函数 ngx_http_handler 在文件 src/http/ngx_http_core_module.c 中定义如下:
void ngx_http_handler(ngx_http_request_t *r) { ngx_http_core_main_conf_t *cmcf; r->connection->log->action = NULL; r->connection->unexpected_eof = 0; /* 若当前请求的internal标志位为0,表示不需要重定向 */ if (!r->internal) { /* 下面语句是决定是否使用keepalive机制 */ switch (r->headers_in.connection_type) { case 0: r->keepalive = (r->http_version > NGX_HTTP_VERSION_10); break; case NGX_HTTP_CONNECTION_CLOSE: r->keepalive = 0; break; case NGX_HTTP_CONNECTION_KEEP_ALIVE: r->keepalive = 1; break; } /* 设置延迟关闭标志位 */ r->lingering_close = (r->headers_in.content_length_n > 0 || r->headers_in.chunked); /* * phase_handler序号设置为0,表示执行ngx_http_phase_engine_t结构体成员 * ngx_http_phase_handler_t *handlers数组中的第一个回调方法; */ r->phase_handler = 0; } else { /* 若当前请求的internal标志位为1,表示需要做内部跳转 */ /* 获取ngx_http_core_module模块的main级别的配置项结构 */ cmcf = ngx_http_get_module_main_conf(r, ngx_http_core_module); /* * 将phase_handler序号设为server_rewriter_index, * 该phase_handler序号是作为ngx_http_phase_engine_t结构中成员 * ngx_http_phase_handler_t *handlers回调方法数组的序号, * 即表示回调方法在该数组中所处的位置; * * server_rewrite_index则是handlers数组中NGX_HTTP_SERVER_REWRITE_PHASE阶段的 * 第一个ngx_http_phase_handler_t回调的方法; */ r->phase_handler = cmcf->phase_engine.server_rewrite_index; } r->valid_location = 1; #if (NGX_HTTP_GZIP) r->gzip_tested = 0; r->gzip_ok = 0; r->gzip_vary = 0; #endif /* 设置当前请求写事件的回调方法 */ r->write_event_handler = ngx_http_core_run_phases; /* * 执行该回调方法,将调用各个HTTP模块共同处理当前请求, * 各个HTTP模块按照11个HTTP阶段进行处理; */ ngx_http_core_run_phases(r); }
ngx_http_core_run_phases 函数的执行流程:
- 判断每个 ngx_http_phase_handler_t 处理阶段是否实现checker 方法:
- 若实现 checker 方法,则执行 phase_handler 序号在 ngx_http_phase_handler_t *handlers数组中指定的
checker 方法;执行完 checker 方法,若返回 NGX_OK 则退出;若返回非NGX_OK,则继续执行下一个
HTTP 模块在该阶段的 checker 方法; - 若没有实现 checker 方法,则直接退出;
- 若实现 checker 方法,则执行 phase_handler 序号在 ngx_http_phase_handler_t *handlers数组中指定的
checker 方法;执行完 checker 方法,若返回 NGX_OK 则退出;若返回非NGX_OK,则继续执行下一个
函数 ngx_http_core_run_phases 在文件src/http/ngx_http_core_module.c 中定义如下:
void ngx_http_core_run_phases(ngx_http_request_t *r) { ngx_int_t rc; ngx_http_phase_handler_t *ph; ngx_http_core_main_conf_t *cmcf; /* 获取ngx_http_core_module模块的main级别的配置项结构体 */ cmcf = ngx_http_get_module_main_conf(r, ngx_http_core_module); /* 获取各个HTTP模块处理请求的回调方法数组 */ ph = cmcf->phase_engine.handlers; /* 若实现了checker方法 */ while (ph[r->phase_handler].checker) { /* 执行phase_handler序号在数组中指定的checker方法 */ rc = ph[r->phase_handler].checker(r, &ph[r->phase_handler]); /* 成功执行checker方法,则退出,否则继续执行下一个HTTP模块的checker方法 */ if (rc == NGX_OK) { return; } } }
处理子请求
post 子请求是基于 subrequest 机制的,首先看下 post 子请求结构体类型:
/* 子请求的单链表结构 */ typedef struct ngx_http_posted_request_s ngx_http_posted_request_t; struct ngx_http_posted_request_s { /* 指向当前待处理子请求的ngx_http_request_t结构体 */ ngx_http_request_t *request; /* 指向下一个子请求 */ ngx_http_posted_request_t *next; };
在请求结构体 ngx_http_request_t 中有一个与post 子请求相关的成员 posted_requests,该成员把各个 post 子请求按照子请求结构体ngx_http_posted_request_t 的结构连接成单链表的形式,请求结构体ngx_http_request_t 中 main 成员是子请求的原始请求,parent 成员是子请求的父请求。下面是子请求的处理过程。
ngx_http_run_posted_requests 函数执行流程:
- 判断当前连接是否已被销毁(即标志位 destroyed 是否为0),若被销毁则直接 return 退出,否则继续执行;
- 获取原始请求的子请求链表,若子请求链表为空(表示没有 post 请求)则直接return 退出,否则继续执行;
- 遍历子请求链表,执行每个 post 请求的写事件回调方法write_event_handler;
函数 ngx_http_run_posted_requests 在文件src/http/ngx_http_request.c 中定义如下:
void ngx_http_run_posted_requests(ngx_connection_t *c) { ngx_http_request_t *r; ngx_http_log_ctx_t *ctx; ngx_http_posted_request_t *pr; for ( ;; ) { /* 若当前连接已被销毁,则直接退出 */ if (c->destroyed) { return; } /* 获取当前连接所对应的请求 */ r = c->data; /* 获取原始请求的子请求单链表 */ pr = r->main->posted_requests; /* 若子请求单链表为空,则直接退出 */ if (pr == NULL) { return; } /* 将原始请求的posted_requests指向单链表的下一个post请求 */ r->main->posted_requests = pr->next; /* 获取子请求链表中的第一个post请求 */ r = pr->request; ctx = c->log->data; ctx->current_request = r; ngx_log_debug2(NGX_LOG_DEBUG_HTTP, c->log, 0, "http posted request: \"%V?%V\"", &r->uri, &r->args); /* * 调用当前post请求写事件的回调方法write_event_handler; * 子请求不被网络事件驱动,因此不需要调用read_event_handler; */ r->write_event_handler(r); } }
处理 HTTP 请求包体
下面开始要分析
其中有一个很重要的成员就是请求结构体 ngx_http_request_t 中的引用计数count,引用计数是用来决定是否真正结束当前请求,若引用计数为0 时,表示没有其他动作在处理该请求,则可以终止该请求;若引用计数不为0 时,表示当前请求还有其他动作在操作,因此不能结束当前请求,以免发生错误;那怎么样控制这个引用计数呢?例如,当一个请求添加新事件,或是把一些原本从定时器、epoll 事件机制中移除的事件从新加入到其中等等,出现这些情况都是要对引用计数增加1;当要结束请求时,首先会把引用计数减 1,并判断该引用计数是否为 0,再进一步判断是否决定真的结束当前请求。
接收 HTTP 请求包体
/* 存储HTTP请求包体的结构体ngx_http_request_body_t */ typedef struct { /* 存放HTTP请求包体的临时文件 */ ngx_temp_file_t *temp_file; /* * 指向接收HTTP请求包体的缓冲区链表表头, * 因为当一个缓冲区ngx_buf_t无法容纳所有包体时,就需要多个缓冲区形成链表; */ ngx_chain_t *bufs; /* 指向当前保存HTTP请求包体的缓冲区 */ ngx_buf_t *buf; /* * 根据content-length头部和已接收包体长度,计算还需接收的包体长度; * 即当前剩余的请求包体大小; */ off_t rest; /* 接收HTTP请求包体缓冲区链表空闲缓冲区 */ ngx_chain_t *free; /* 接收HTTP请求包体缓冲区链表已使用的缓冲区 */ ngx_chain_t *busy; /* 保存chunked的解码状态,供ngx_http_parse_chunked方法使用 */ ngx_http_chunked_t *chunked; /* * HTTP请求包体接收完毕后执行的回调方法; * 即ngx_http_read_client_request_body方法传递的第 2 个参数; */ ngx_http_client_body_handler_pt post_handler; } ngx_http_request_body_t;
接收
- 원래 요청 참조 계산r->main->count 증가1참조 횟수count 관리는 다음과 같습니다. 로직이 켜지는 동안 참조 카운트는 1만큼 증가하고, 프로세스가 끝나면 참조 카운트는 감소합니다. 1. ngx_http_read_client_request_body 함수에서 먼저 원래 요청의 참조 카운트를 1만큼 늘립니다. 비정상적인 종료가 발생하면 함수가 반환되기 전에 참조 카운트가 감소됩니다. 1; 정상적으로 종료되면 post_handler 콜백 메소드에 의해 참조 횟수가 계속 유지됩니다.
- 현재 요청 본문을 완전히 수신했는지 확인합니다(r-> ;request_body는 1)이거나 삭제됩니다(r->discard_body는 1) 그 중 하나라도 충족되면 다시 요청 패킷 본문을 받을 필요 없이 post_handler 콜백 메소드가 직접 실행되며, NGX_OK는 현재 함수에서 반환됩니다.
HTTP 요청 본문을 받아야 하는 경우 먼저 ngx_http_test_expect 메서드를 호출하여 여부를 확인하세요. 클라이언트는 Expect:100-continue를 보냅니다. 헤더는 요청 본문이 전송될 것으로 예상하고, 서버는 클라이언트가 요청을 보낼 수 있음을 나타내는 HTTP/1.1 100 Continue에 응답합니다. body; - 현재 요청 ngx_http_request_t 구조 request_body 멤버를 할당하고, 요청 패킷 본문을 받을 준비가 되었습니다.
- 요청의 내용을 확인하세요. -length 헤더, 요청 헤더인 경우 content-length 필드가 0보다 작으면 요청 패킷 본문을 계속 수신할 필요가 없음을 의미합니다(즉, 전체 요청 패킷 본문이 수신됨) post_handler 콜백이 직접 실행되고 NGX_OK가 현재 함수에서 반환됩니다. 요청 헤더의 content-length
- 필드가 0보다 크면 요청 패키지 본문을 계속 수신해야 함을 의미합니다. 먼저 현재 요청 ngx_http_request_t의 header_in 멤버에 처리되지 않은 데이터가 포함되어 있는지 확인합니다. 처리되지 않은 데이터가 있으면 header_in 버퍼가 요청을 수신하고 있음을 의미합니다. 요청 헤더가 요청보다 먼저 수신되었기 때문에 HTTP 요청 헤더 수신 중에 요청 본문을 미리 수신할 수 있기 때문에 이 기간 동안 요청 헤더를 미리 수신했습니다. 요청 패키지 바디인 버퍼에 처리되지 않은 데이터가 있는 경우 바디를 수신합니다.
미리 수신한 요청 패킷 본문인 - header_in
- 버퍼에 처리되지 않은 데이터가 있는 경우 먼저 버퍼 요청 패킷 길이 preread가 다음보다 큰지 확인하세요. 요청 본문 길이
content-length 필드가 이보다 크면 완료되었음을 의미합니다.
HTTP 패키지 본문 요청, 계속 수신할 필요가 없으면
post_handler 콜백 메소드를 실행합니다. header_in buffer 즉, 미리 수신된 요청 패킷 본문이지만 버퍼 요청 패킷 본문 길이 - preread가 요청 패킷 본문 길이보다 작습니다.
content-length 필드는 수신된 요청 패킷 본문이 불완전하므로 요청 패킷 본문을 계속 수신해야 함을 나타냅니다.통화 기능
ngx_http_request_body_filte 수신된 요청 본문을 구문 분석하고 요청에 마운트합니다.
ngx_http_request_t r request_body->bufs, header_in 버퍼에 남은 공간은 남은 요청 패킷 크기 rest를 수신하기에 충분합니다. , 그러면 새 버퍼를 할당하고 현재 요청을 설정할 필요가 없습니다.
ngx_http_request_t read_event_handler의 읽기 이벤트 콜백 메소드는 ngx_http_read_client_request_body_handler이고, 쓰기 이벤트 write_event_handler 콜백 메소드는
ngx_http_request_empty_handler(즉, 어떤 작업도 수행하지 않음). 그런 다음 ngx_http_do_read_client_request_body 메소드를 호출하여
HTTP 요청 본문을 실제로 수신합니다. TCP 연결 시 소켓 버퍼의 모든 문자 스트림을 읽고 임시 파일에 쓸지 여부와 요청 패킷 본문을 모두 동시에 수신할지 여부를 결정합니다. 콜백 메서드 실행 후 전체 패킷 본문 post_handler; -
header_in 버퍼에 처리되지 않은 데이터가 있는 경우 미리 수신된 요청 패킷 본문이지만 버퍼 요청 패킷 본문 길이는 preread가 요청 패킷 본문 길이보다 작습니다.
content-length 필드이거나 header_in 버퍼에 처리되지 않은 데이터가 없고 header_in의 남은 공간이 수신하기에 충분하지 않습니다.
HTTP 패키지 본문을 요청하면 요청 패키지 본문을 수신하기 위한 버퍼가 다시 할당된 다음 현재 요청이 설정됩니다. ngx_http_request_t의 읽기 이벤트 콜백 메소드는 ngx_http_read_client_request_body_handler이고, 쓰기 이벤트 write_event_handler 콜백 메소드는 ngx_http_request_empty_handler입니다(즉, 어떤 작업도 수행하지 않습니다. ) 그런 다음 메서드를 호출합니다. ngx_http_do_read_client_request_body 정말 받았습니다 HTTP 요청 본문,
- 버퍼에 처리되지 않은 데이터가 있는 경우 먼저 버퍼 요청 패킷 길이 preread가 다음보다 큰지 확인하세요. 요청 본문 길이
content-length 필드가 이보다 크면 완료되었음을 의미합니다.
HTTP 패키지 본문 요청, 계속 수신할 필요가 없으면
파일의 ngx_http_read_client_request_body 정의는 다음과 같습니다: /* HTTP 요청 본문 수신*/ ngx_int_t ngx_http_read_client_request_body(ngx_http_request_t *r, ngx_http_client_body_handler_pt post_handler) { size_t 미리 읽기; ssize_t 크기; ngx_int_t rc; ngx_buf_t *b; ngx_chain_t 출력, *cl; ngx_http_request_body_t *rb; ngx_http_core_loc_conf_t *clcf; /* * 프로세스를 시작하는 로직이 있으면 참조 카운트는 1씩 증가합니다. 프로세스가 종료되면 참조 카운트는 1씩 감소합니다. * ngx_http_read_client_request_body 메소드에서는 먼저 원래 요청 참조 횟수를 1씩 늘리고, * 비정상적인 종료가 발생하면 함수가 반환되기 전에 참조 카운트가 1씩 감소합니다. * 정상적으로 종료되면 post_handler 메소드에 의해 참조 횟수가 계속 유지됩니다. */ /* 원래 요청의 참조 횟수를 1만큼 늘립니다. */ r->메인->카운트++; #if (NGX_HTTP_SPDY) if (r->spdy_stream && r == r->main) { rc = ngx_http_spdy_read_request_body(r, post_handler); 끝났어; } #endif /* HTTP 요청 본문이 처리되지 않으면 request_body 구조가 할당되지 않고 처리될 때만 할당됩니다 */ /* * 현재 HTTP 요청이 원래 요청이 아니거나 HTTP 요청 본문을 읽거나 삭제한 경우 * 그런 다음 HTTP 모듈의 post_handler 콜백 메소드를 직접 실행하고 NGX_OK를 반환합니다. */ if (r != r->main || r->request_body || r->discard_body) { post_handler(r); NGX_OK를 반환합니다. } /* * ngx_http_test_expect는 클라이언트가 Expect:100-continue 헤더를 전송하는지 확인하는 데 사용됩니다. * 클라이언트가 요청 본문 데이터를 보낼 것으로 예상된다는 것을 나타내기 위해 이 헤더를 보낸 경우 서버는 반환합니다.

PHP는 전자 상거래, 컨텐츠 관리 시스템 및 API 개발에 널리 사용됩니다. 1) 전자 상거래 : 쇼핑 카트 기능 및 지불 처리에 사용됩니다. 2) 컨텐츠 관리 시스템 : 동적 컨텐츠 생성 및 사용자 관리에 사용됩니다. 3) API 개발 : 편안한 API 개발 및 API 보안에 사용됩니다. 성능 최적화 및 모범 사례를 통해 PHP 애플리케이션의 효율성과 유지 보수 성이 향상됩니다.

PHP를 사용하면 대화식 웹 컨텐츠를 쉽게 만들 수 있습니다. 1) HTML을 포함하여 컨텐츠를 동적으로 생성하고 사용자 입력 또는 데이터베이스 데이터를 기반으로 실시간으로 표시합니다. 2) 프로세스 양식 제출 및 동적 출력을 생성하여 htmlspecialchars를 사용하여 XSS를 방지합니다. 3) MySQL을 사용하여 사용자 등록 시스템을 작성하고 Password_Hash 및 전처리 명세서를 사용하여 보안을 향상시킵니다. 이러한 기술을 마스터하면 웹 개발의 효율성이 향상됩니다.

PHP와 Python은 각각 고유 한 장점이 있으며 프로젝트 요구 사항에 따라 선택합니다. 1.PHP는 웹 개발, 특히 웹 사이트의 빠른 개발 및 유지 보수에 적합합니다. 2. Python은 간결한 구문을 가진 데이터 과학, 기계 학습 및 인공 지능에 적합하며 초보자에게 적합합니다.

PHP는 여전히 역동적이며 현대 프로그래밍 분야에서 여전히 중요한 위치를 차지하고 있습니다. 1) PHP의 단순성과 강력한 커뮤니티 지원으로 인해 웹 개발에 널리 사용됩니다. 2) 유연성과 안정성은 웹 양식, 데이터베이스 작업 및 파일 처리를 처리하는 데 탁월합니다. 3) PHP는 지속적으로 발전하고 최적화하며 초보자 및 숙련 된 개발자에게 적합합니다.

PHP는 현대 웹 개발, 특히 컨텐츠 관리 및 전자 상거래 플랫폼에서 중요합니다. 1) PHP는 Laravel 및 Symfony와 같은 풍부한 생태계와 강력한 프레임 워크 지원을 가지고 있습니다. 2) Opcache 및 Nginx를 통해 성능 최적화를 달성 할 수 있습니다. 3) PHP8.0은 성능을 향상시키기 위해 JIT 컴파일러를 소개합니다. 4) 클라우드 네이티브 애플리케이션은 Docker 및 Kubernetes를 통해 배포되어 유연성과 확장 성을 향상시킵니다.

PHP는 특히 빠른 개발 및 동적 컨텐츠를 처리하는 데 웹 개발에 적합하지만 데이터 과학 및 엔터프라이즈 수준의 애플리케이션에는 적합하지 않습니다. Python과 비교할 때 PHP는 웹 개발에 더 많은 장점이 있지만 데이터 과학 분야에서는 Python만큼 좋지 않습니다. Java와 비교할 때 PHP는 엔터프라이즈 레벨 애플리케이션에서 더 나빠지지만 웹 개발에서는 더 유연합니다. JavaScript와 비교할 때 PHP는 백엔드 개발에서 더 간결하지만 프론트 엔드 개발에서는 JavaScript만큼 좋지 않습니다.

PHP와 Python은 각각 고유 한 장점이 있으며 다양한 시나리오에 적합합니다. 1.PHP는 웹 개발에 적합하며 내장 웹 서버 및 풍부한 기능 라이브러리를 제공합니다. 2. Python은 간결한 구문과 강력한 표준 라이브러리가있는 데이터 과학 및 기계 학습에 적합합니다. 선택할 때 프로젝트 요구 사항에 따라 결정해야합니다.

PHP는 서버 측에서 널리 사용되는 스크립팅 언어이며 특히 웹 개발에 적합합니다. 1.PHP는 HTML을 포함하고 HTTP 요청 및 응답을 처리 할 수 있으며 다양한 데이터베이스를 지원할 수 있습니다. 2.PHP는 강력한 커뮤니티 지원 및 오픈 소스 리소스를 통해 동적 웹 컨텐츠, 프로세스 양식 데이터, 액세스 데이터베이스 등을 생성하는 데 사용됩니다. 3. PHP는 해석 된 언어이며, 실행 프로세스에는 어휘 분석, 문법 분석, 편집 및 실행이 포함됩니다. 4. PHP는 사용자 등록 시스템과 같은 고급 응용 프로그램을 위해 MySQL과 결합 할 수 있습니다. 5. PHP를 디버깅 할 때 error_reporting () 및 var_dump ()와 같은 함수를 사용할 수 있습니다. 6. 캐싱 메커니즘을 사용하여 PHP 코드를 최적화하고 데이터베이스 쿼리를 최적화하며 내장 기능을 사용하십시오. 7


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기

드림위버 CS6
시각적 웹 개발 도구

WebStorm Mac 버전
유용한 JavaScript 개발 도구

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경
