찾다
백엔드 개발파이썬 튜토리얼Python编程中实现迭代器的一些技巧小结

yield实现迭代器
如引言中的描述,实现一个可迭代的功能要是每次都手动实现iter,next稍稍有点麻烦,所需的代码也是比较客观。在python中也能通过借助yield的方式来实现一个迭代器。yield有一个关键的作能,它能够中断当前的执行逻辑,保持住现场(各种值的状态,执行的位置等等),返回相应的值,下一次执行的时候能够无缝的接着上次的地方继续执行,如此循环反复知道满足事先设置的退出条件或者发生错误强制被中断。
其具体功能是可以当return使用,从函数里返回一个值,不同之处是用yield返回之后,可以让函数从上回yield返回的地点继续执行。也就是说,yield返回函数,交给调用者一个返回值,然后再“瞬移”回去,让函数继续运行, 直到吓一跳yield语句再返回一个新的值。使用yield返回后,调用者实际得到的是一个迭代器对象,迭代器的值就是返回值,而调用该迭代器的next()方法会导致该函数恢复yield语句的执行环境继续往下跑,直到遇到下一个yield为止,如果遇不到yield,就会抛出异常表示迭代结束。
看一个例子:

>>> def test_yield():
... yield 1
... yield 2
... yield (1,2)
...
>>> a = test_yield()
>>> a.next()
1
>>> a.next()
2
>>> a.next()
(1, 2)
>>> a.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in &#63;
StopIteration

光听描述就觉得和迭代器的工作方式很一致是吧,的确,yield能把它所在的函索变成一个迭代器,拿最经典的菲波那切数列的例子聊简述一下工作的方式:

def fab(max): 
 n, a, b = 0, 0, 1 
 while n < max:
 print b, "is generated" 
 yield b
 a, b = b, a + b 
 n = n + 1 

>>> for item in fab(5):
... print item
... 
1 is generated
1
1 is generated
1
2 is generated
2
3 is generated
3
5 is generated
5

我们有回想一下for关键字的语法糖,在这里遍历5以内的菲波那切数列值的时候,很显然fab(5)生成了一个可迭代的对象,遍历开始的时候它的iter方法被调用返回一个实际工作的迭代器对象,然后每一次调用它的next方法返回一个菲波那切数列值然后打印出来。
我们可以将调用生成器函数返回的对象的属性打印出来,看一下到底发生了什么:

>>> temp_gen = fab(5)
>>> dir(temp_gen)
['__class__', '__delattr__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__iter__', '__name__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'close', 'gi_code', 'gi_frame', 'gi_running', 'next', 'send', 'throw']

正如上面的描述,单纯调用fab并不会让函数立刻开始返回任何值,并且从打印出的fab(5)的属性列表能够看到,生成器函数返回的对象包含有__iter__,next的实现。与我们手动实现相比,使用yield很方便的就能够实现我们想要的功能,代码量缩减不少。

Generator Expression
python中另一种能更优雅生成迭代器对象的方式就是使用生成器表达式Generator expression,它和列表解析表达式有着非常相似的写法,仅仅是把中括号[]变成()而已,不过小小改变产生的实际效果确实大大的不一样:

>>> temp_gen = (x for x in range(5))
>>> temp_gen
<generator object <genexpr> at 0x7192d8>
>>> for item in temp_gen:
... print item
... 
0
1
2
3
4
>>> dir(temp_gen)
['__class__', '__delattr__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__iter__', '__name__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'close', 'gi_code', 'gi_frame', 'gi_running', 'next', 'send', 'throw']

看过上面对yield的描述,这个例子以及对应的输出日志还是相当直接明了的,无论是temp_gen的打印日志描述,for语句遍历的输出结果还是调用dir输出的属性列表,都赤裸裸的表明生成器表达式确实生成了能够支持迭代的对象。另外表达式里面也能够调用函数,增加适量的过滤条件。

内置库itertools 和 iter
python内置的库itertools提供了大量的工具方法,这些方法能够帮助我们创建能进行高效遍历和迭代的对象,里面包含不少有意思并且有用的方法,比如像chain, izip/izip_longest, combinations, ifilter等等。在python中还有一个内置的iter函数非常有用,能够返回一个迭代器对象,之后也就能够进行可以查看对应的帮助文档简单看一下:

>>> iter('abc')
<iterator object at 0x718590>
>>> str_iterator = iter('abc')
>>> next(str_iterator)
'a'
>>> next(str_iterator)
'b'
>>> lst_gen = iter([1,2,3,4])
>>> lst_gen
<listiterator object at 0x728e30>
>>> dir(lst_gen)
['__class__', '__delattr__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__iter__', '__length_hint__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'next']

>>> help(iter)
Help on built-in function iter in module builtins:

iter(...)
 iter(iterable) -> iterator
 iter(callable, sentinel) -> iterator

 Get an iterator from an object. In the first form, the argument must
 supply its own iterator, or be a sequence.
 In the second form, the callable is called until it returns the sentinel.

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
Python vs. C : 주요 차이점 이해Python vs. C : 주요 차이점 이해Apr 21, 2025 am 12:18 AM

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Python vs. C : 프로젝트를 위해 어떤 언어를 선택해야합니까?Python vs. C : 프로젝트를 위해 어떤 언어를 선택해야합니까?Apr 21, 2025 am 12:17 AM

Python 또는 C를 선택하는 것은 프로젝트 요구 사항에 따라 다릅니다. 1) 빠른 개발, 데이터 처리 및 프로토 타입 설계가 필요한 경우 Python을 선택하십시오. 2) 고성능, 낮은 대기 시간 및 근접 하드웨어 제어가 필요한 경우 C를 선택하십시오.

파이썬 목표에 도달 : 매일 2 시간의 힘파이썬 목표에 도달 : 매일 2 시간의 힘Apr 20, 2025 am 12:21 AM

매일 2 시간의 파이썬 학습을 투자하면 프로그래밍 기술을 효과적으로 향상시킬 수 있습니다. 1. 새로운 지식 배우기 : 문서를 읽거나 자습서를 시청하십시오. 2. 연습 : 코드를 작성하고 완전한 연습을합니다. 3. 검토 : 배운 내용을 통합하십시오. 4. 프로젝트 실무 : 실제 프로젝트에서 배운 것을 적용하십시오. 이러한 구조화 된 학습 계획은 파이썬을 체계적으로 마스터하고 경력 목표를 달성하는 데 도움이 될 수 있습니다.

2 시간 극대화 : 효과적인 파이썬 학습 전략2 시간 극대화 : 효과적인 파이썬 학습 전략Apr 20, 2025 am 12:20 AM

2 시간 이내에 Python을 효율적으로 학습하는 방법 : 1. 기본 지식을 검토하고 Python 설치 및 기본 구문에 익숙한 지 확인하십시오. 2. 변수, 목록, 기능 등과 같은 파이썬의 핵심 개념을 이해합니다. 3. 예제를 사용하여 마스터 기본 및 고급 사용; 4. 일반적인 오류 및 디버깅 기술을 배우십시오. 5. 목록 이해력 사용 및 PEP8 스타일 안내서와 같은 성능 최적화 및 모범 사례를 적용합니다.

Python과 C : The Hight Language 중에서 선택Python과 C : The Hight Language 중에서 선택Apr 20, 2025 am 12:20 AM

Python은 초보자 및 데이터 과학에 적합하며 C는 시스템 프로그래밍 및 게임 개발에 적합합니다. 1. 파이썬은 간단하고 사용하기 쉽고 데이터 과학 및 웹 개발에 적합합니다. 2.C는 게임 개발 및 시스템 프로그래밍에 적합한 고성능 및 제어를 제공합니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

Python vs. C : 프로그래밍 언어의 비교 분석Python vs. C : 프로그래밍 언어의 비교 분석Apr 20, 2025 am 12:14 AM

Python은 데이터 과학 및 빠른 개발에 더 적합한 반면 C는 고성능 및 시스템 프로그래밍에 더 적합합니다. 1. Python Syntax는 간결하고 학습하기 쉽고 데이터 처리 및 과학 컴퓨팅에 적합합니다. 2.C는 복잡한 구문을 가지고 있지만 성능이 뛰어나고 게임 개발 및 시스템 프로그래밍에 종종 사용됩니다.

하루 2 시간 : 파이썬 학습의 잠재력하루 2 시간 : 파이썬 학습의 잠재력Apr 20, 2025 am 12:14 AM

파이썬을 배우기 위해 하루에 2 시간을 투자하는 것이 가능합니다. 1. 새로운 지식 배우기 : 목록 및 사전과 같은 1 시간 안에 새로운 개념을 배우십시오. 2. 연습 및 연습 : 1 시간을 사용하여 소규모 프로그램 작성과 같은 프로그래밍 연습을 수행하십시오. 합리적인 계획과 인내를 통해 짧은 시간에 Python의 핵심 개념을 마스터 할 수 있습니다.

Python vs. C : 학습 곡선 및 사용 편의성Python vs. C : 학습 곡선 및 사용 편의성Apr 19, 2025 am 12:20 AM

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

PhpStorm 맥 버전

PhpStorm 맥 버전

최신(2018.2.1) 전문 PHP 통합 개발 도구

맨티스BT

맨티스BT

Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

MinGW - Windows용 미니멀리스트 GNU

MinGW - Windows용 미니멀리스트 GNU

이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

WebStorm Mac 버전

WebStorm Mac 버전

유용한 JavaScript 개발 도구