一般来说,一个描述器是一个有“绑定行为”的对象属性(object attribute),它的访问控制被描述器协议方法重写。这些方法是 __get__(), __set__(), 和 __delete__() 。有这些方法的对象叫做描述器。
默认对属性的访问控制是从对象的字典里面(__dict__)中获取(get), 设置(set)和删除(delete)它。举例来说, a.x 的查找顺序是, a.__dict__['x'] , 然后 type(a).__dict__['x'] , 然后找 type(a) 的父类(不包括元类(metaclass)).如果查找到的值是一个描述器, Python就会调用描述器的方法来重写默认的控制行为。这个重写发生在这个查找环节的哪里取决于定义了哪个描述器方法。注意, 只有在新式类中时描述器才会起作用。(新式类是继承自 type 或者 object 的类)
描述器是强大的,应用广泛的。描述器正是属性, 实例方法, 静态方法, 类方法和 super 的背后的实现机制。描述器在Python自身中广泛使用,以实现Python 2.2中引入的新式类。描述器简化了底层的C代码,并为Python的日常编程提供了一套灵活的新工具。
描述器协议
descr.__get__(self, obj, type=None) --> value descr.__get__(self, obj, value) --> None descr.__delete__(self, obj) --> None
一个对象如果是一个描述器,被当做对象属性(很重要)时重写默认的查找行为。
如果一个对象同时定义了__get__和__set__,它叫data descriptor。仅定义了__get__的描述器叫non-data descriptor。
data descriptor和non-data descriptor区别在于: 相对于实例的字典的优先级,如果实例字典有与描述器具同名的属性,如果描述器是data descriptor,优先使用data descriptor。如果是non-data descriptor,优先使用字典中的属性。
class B(object): def __init__(self): self.name = 'mink' def __get__(self, obj, objtype=None): return self.name class A(object): name = B() a = A() print a.__dict__ # print {} print a.name # print mink a.name = 'kk' print a.__dict__ # print {'name': 'kk'} print a.name # print kk
这里B是一个non-data descriptor所以当a.name = 'kk'的时候,a.__dict__里会有name属性, 接下来给它设置__set__
def __set__(self, obj, value): self.name = value ... do something a = A() print a.__dict__ # print {} print a.name # print mink a.name = 'kk' print a.__dict__ # print {} print a.name # print kk
因为data descriptor访问属性优先级比实例的字典高,所以a.__dict__是空的。
描述器的调用
描述器可以直接这么调用: d.__get__(obj)
然而更常见的情况是描述器在属性访问时被自动调用。举例来说, obj.d 会在 obj 的字典中找 d ,如果 d 定义了 __get__ 方法,那么 d.__get__(obj) 会依据下面的优先规则被调用。
调用的细节取决于 obj 是一个类还是一个实例。另外,描述器只对于新式对象和新式类才起作用。继承于 object 的类叫做新式类。
对于对象来讲,方法 object.__getattribute__() 把 b.x 变成 type(b).__dict__['x'].__get__(b, type(b)) 。具体实现是依据这样的优先顺序:资料描述器优先于实例变量,实例变量优先于非资料描述器,__getattr__()方法(如果对象中包含的话)具有最低的优先级。完整的C语言实现可以在 Objects/object.c 中 PyObject_GenericGetAttr() 查看。
对于类来讲,方法 type.__getattribute__() 把 B.x 变成 B.__dict__['x'].__get__(None, B) 。用Python来描述就是:
def __getattribute__(self, key): "Emulate type_getattro() in Objects/typeobject.c" v = object.__getattribute__(self, key) if hasattr(v, '__get__'): return v.__get__(None, self) return v
其中重要的几点:
- 描述器的调用是因为 __getattribute__()
- 重写 __getattribute__() 方法会阻止正常的描述器调用
- __getattribute__() 只对新式类的实例可用
- object.__getattribute__() 和 type.__getattribute__() 对 __get__() 的调用不一样
- 资料描述器总是比实例字典优先。
- 非资料描述器可能被实例字典重写。(非资料描述器不如实例字典优先)
- super() 返回的对象同样有一个定制的 __getattribute__() 方法用来调用描述器。调用 super(B, obj).m() 时会先在 obj.__class__.__mro__ 中查找与B紧邻的基类A,然后返回 A.__dict__['m'].__get__(obj, A) 。如果不是描述器,原样返回 m 。如果实例字典中找不到 m ,会回溯继续调用 object.__getattribute__() 查找。(译者注:即在 __mro__ 中的下一个基类中查找)
注意:在Python 2.2中,如果 m 是一个描述器, super(B, obj).m() 只会调用方法 __get__() 。在Python 2.3中,非资料描述器(除非是个旧式类)也会被调用。 super_getattro() 的实现细节在: Objects/typeobject.c ,[del] 一个等价的Python实现在 Guido's Tutorial [/del] (译者注:原文此句已删除,保留供大家参考)。
以上展示了描述器的机理是在 object, type, 和 super 的 __getattribute__() 方法中实现的。由 object 派生出的类自动的继承这个机理,或者它们有个有类似机理的元类。同样,可以重写类的 __getattribute__() 方法来关闭这个类的描述器行为。
描述器例子
下面的代码中定义了一个资料描述器,每次 get 和 set 都会打印一条消息。重写 __getattribute__() 是另一个可以使所有属性拥有这个行为的方法。但是,描述器在监视特定属性的时候是很有用的。
class RevealAccess(object): """A data descriptor that sets and returns values normally and prints a message logging their access. """ def __init__(self, initval=None, name='var'): self.val = initval self.name = name def __get__(self, obj, objtype): print 'Retrieving', self.name return self.val def __set__(self, obj, val): print 'Updating' , self.name self.val = val >>> class MyClass(object): x = RevealAccess(10, 'var "x"') y = 5 >>> m = MyClass() >>> m.x Retrieving var "x" 10 >>> m.x = 20 Updating var "x" >>> m.x Retrieving var "x" 20 >>> m.y 5
这个协议非常简单,并且提供了令人激动的可能。一些用途实在是太普遍以致于它们被打包成独立的函数。像属性(property), 方法(bound和unbound method), 静态方法和类方法都是基于描述器协议的。

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?

Fiddlerevery Where를 사용할 때 Man-in-the-Middle Reading에 Fiddlereverywhere를 사용할 때 감지되는 방법 ...

Python 3.6에 피클 파일로드 3.6 환경 보고서 오류 : modulenotfounderror : nomodulename ...


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

mPDF
mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

Dreamweaver Mac版
시각적 웹 개발 도구
