찾다
백엔드 개발파이썬 튜토리얼Python random模块(获取随机数)常用方法和使用例子

random.random
random.random()用于生成一个0到1的随机符点数: 0

random.uniform
random.uniform(a, b),用于生成一个指定范围内的随机符点数,两个参数其中一个是上限,一个是下限。如果a > b,则生成的随机数n: a

复制代码 代码如下:

print random.uniform(10, 20)
print random.uniform(20, 10)
# 18.7356606526
# 12.5798298022 

random.randint
random.randint(a, b),用于生成一个指定范围内的整数。其中参数a是下限,参数b是上限,生成的随机数n: a

复制代码 代码如下:

print random.randint(12, 20)  # 生成的随机数 n: 12 print random.randint(20, 20)  # 结果永远是20    
# print random.randint(20, 10)  # 该语句是错误的。下限必须小于上限

random.randrange
random.randrange([start], stop[, step]),从指定范围内,按指定基数递增的集合中 获取一个随机数。如:random.randrange(10, 100, 2),结果相当于从[10, 12, 14, 16, ... 96, 98]序列中获取一个随机数。random.randrange(10, 100, 2)在结果上与 random.choice(range(10, 100, 2) 等效

random.choice
random.choice从序列中获取一个随机元素。其函数原型为:random.choice(sequence)。参数sequence表示一个有序类型。这里要说明 一下:sequence在python不是一种特定的类型,而是泛指一系列的类型。list, tuple, 字符串都属于sequence。有关sequence可以查看python手册数据模型这一章。下面是使用choice的一些例子:

复制代码 代码如下:

print random.choice("学习Python")
print random.choice(["JGood", "is", "a", "handsome", "boy"])
print random.choice(("Tuple", "List", "Dict")) 

random.shuffle
random.shuffle(x[, random]),用于将一个列表中的元素打乱。如:

复制代码 代码如下:

p = ["Python", "is", "powerful", "simple", "and so on..."]
random.shuffle(p)
print p
# ['powerful', 'simple', 'is', 'Python', 'and so on...'] 

random.sample
random.sample(sequence, k),从指定序列中随机获取指定长度的片断。sample函数不会修改原有序列

复制代码 代码如下:

list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
slice = random.sample(list, 5)  # 从list中随机获取5个元素,作为一个片断返回
print slice
print list  # 原有序列并没有改变


随机整数:

复制代码 代码如下:
>>> import random
>>> random.randint(0,99)
# 21

随机选取0到100间的偶数:

复制代码 代码如下:
>>> import random
>>> random.randrange(0, 101, 2)
# 42

随机浮点数:

复制代码 代码如下:
>>> import random
>>> random.random()
0.85415370477785668
>>> random.uniform(1, 10)
# 5.4221167969800881

随机字符:

复制代码 代码如下:
>>> import random
>>> random.choice('abcdefg%^*f')
# 'd'

多个字符中选取特定数量的字符:

复制代码 代码如下:
>>> import random
random.sample('abcdefghij', 3)
# ['a', 'd', 'b']

多个字符中选取特定数量的字符组成新字符串:

复制代码 代码如下:
>>> import random
>>> import string
>>> string.join( random.sample(['a','b','c','d','e','f','g','h','i','j'], 3) ).replace(" ","")
# 'fih'

随机选取字符串:

复制代码 代码如下:
>>> import random
>>> random.choice ( ['apple', 'pear', 'peach', 'orange', 'lemon'] )
# 'lemon'

洗牌:

复制代码 代码如下:
>>> import random
>>> items = [1, 2, 3, 4, 5, 6]
>>> random.shuffle(items)
>>> items
# [3, 2, 5, 6, 4, 1]
성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
어레이는 파이썬으로 과학 컴퓨팅에 어떻게 사용됩니까?어레이는 파이썬으로 과학 컴퓨팅에 어떻게 사용됩니까?Apr 25, 2025 am 12:28 AM

Arraysinpython, 특히 비밀 복구를위한 ArecrucialInscientificcomputing.1) theaRearedFornumericalOperations, DataAnalysis 및 MachinELearning.2) Numpy'SimplementationIncensuressuressurations thanpythonlists.3) arraysenablequick

같은 시스템에서 다른 파이썬 버전을 어떻게 처리합니까?같은 시스템에서 다른 파이썬 버전을 어떻게 처리합니까?Apr 25, 2025 am 12:24 AM

Pyenv, Venv 및 Anaconda를 사용하여 다양한 Python 버전을 관리 할 수 ​​있습니다. 1) PYENV를 사용하여 여러 Python 버전을 관리합니다. Pyenv를 설치하고 글로벌 및 로컬 버전을 설정하십시오. 2) VENV를 사용하여 프로젝트 종속성을 분리하기 위해 가상 환경을 만듭니다. 3) Anaconda를 사용하여 데이터 과학 프로젝트에서 Python 버전을 관리하십시오. 4) 시스템 수준의 작업을 위해 시스템 파이썬을 유지하십시오. 이러한 도구와 전략을 통해 다양한 버전의 Python을 효과적으로 관리하여 프로젝트의 원활한 실행을 보장 할 수 있습니다.

표준 파이썬 어레이를 통해 Numpy Array를 사용하면 몇 가지 장점은 무엇입니까?표준 파이썬 어레이를 통해 Numpy Array를 사용하면 몇 가지 장점은 무엇입니까?Apr 25, 2025 am 12:21 AM

Numpyarrayshaveseveraladvantagesstandardpythonarrays : 1) thearemuchfasterduetoc 기반 간증, 2) thearemorememory-refficient, 특히 withlargedatasets 및 3) wepferoptizedformationsformationstaticaloperations, 만들기, 만들기

어레이의 균질 한 특성은 성능에 어떤 영향을 미칩니 까?어레이의 균질 한 특성은 성능에 어떤 영향을 미칩니 까?Apr 25, 2025 am 12:13 AM

어레이의 균질성이 성능에 미치는 영향은 이중입니다. 1) 균질성은 컴파일러가 메모리 액세스를 최적화하고 성능을 향상시킬 수 있습니다. 2) 그러나 유형 다양성을 제한하여 비 효율성으로 이어질 수 있습니다. 요컨대, 올바른 데이터 구조를 선택하는 것이 중요합니다.

실행 파이썬 스크립트를 작성하기위한 모범 사례는 무엇입니까?실행 파이썬 스크립트를 작성하기위한 모범 사례는 무엇입니까?Apr 25, 2025 am 12:11 AM

tocraftexecutablepythonscripts, 다음과 같은 비스트 프랙티스를 따르십시오 : 1) 1) addashebangline (#!/usr/bin/envpython3) tomakethescriptexecutable.2) setpermissionswithchmod xyour_script.py.3) organtionewithlarstringanduseifname == "__"

Numpy 배열은 배열 모듈을 사용하여 생성 된 배열과 어떻게 다릅니 까?Numpy 배열은 배열 모듈을 사용하여 생성 된 배열과 어떻게 다릅니 까?Apr 24, 2025 pm 03:53 PM

numpyarraysarebetterfornumericaloperations 및 multi-dimensionaldata, mumemer-efficientArrays

Numpy Array의 사용은 Python에서 어레이 모듈 어레이를 사용하는 것과 어떻게 비교됩니까?Numpy Array의 사용은 Python에서 어레이 모듈 어레이를 사용하는 것과 어떻게 비교됩니까?Apr 24, 2025 pm 03:49 PM

numpyarraysarebetterforheavynumericalcomputing, whilearraymoduleisiMoresuily-sportainedprojectswithsimpledatatypes.1) numpyarraysofferversatively 및 formanceforgedatasets 및 complexoperations.2) Thearraymoduleisweighit 및 ep

CTYPES 모듈은 파이썬의 어레이와 어떤 관련이 있습니까?CTYPES 모듈은 파이썬의 어레이와 어떤 관련이 있습니까?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingandmanipulatingC-stylearraysinPython.1)UsectypestointerfacewithClibrariesforperformance.2)CreateC-stylearraysfornumericalcomputations.3)PassarraystoCfunctionsforefficientoperations.However,becautiousofmemorymanagement,performanceo

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

Dreamweaver Mac版

Dreamweaver Mac版

시각적 웹 개발 도구

VSCode Windows 64비트 다운로드

VSCode Windows 64비트 다운로드

Microsoft에서 출시한 강력한 무료 IDE 편집기

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

안전한 시험 브라우저

안전한 시험 브라우저

안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구