찾다
기술 주변기기일체 포함공간 인덱싱을위한 UBER의 H3에 대한 안내서

In today’s data-driven world, efficient geospatial indexing is crucial for applications ranging from ride-sharing and logistics to environmental monitoring and disaster response. Uber’s H3, a powerful open-source spatial indexing system, provides a unique hexagonal grid-based solution that enables seamless geospatial analysis and fast query execution. Unlike traditional rectangular grid systems, H3’s hierarchical hexagonal tiling ensures uniform spatial coverage, better adjacency properties, and reduced distortion. This guide explores H3’s core concepts, installation, functionality, use cases, and best practices to help developers and data scientists leverage its full potential.

Learning Objectives

  • Understand the fundamentals of Uber’s H3 spatial indexing system and its advantages over traditional grid systems.
  • Learn how to install and set up H3 for geospatial applications in Python, JavaScript, and other languages.
  • Explore H3’s hierarchical hexagonal grid structure and its benefits for spatial accuracy and indexing.
  • Gain hands-on experience with core H3 functions like neighbor lookup, polygon indexing, and distance calculations.
  • Discover real-world applications of H3, including machine learning, disaster response, and environmental monitoring.

This article was published as a part of the Data Science Blogathon.

Table of contents

  • What is Uber H3?
  • What is Spatial Indexing?
  • Installation Guide (Python, JavaScript, Go, C, etc.)
  • Data Structure and Hierarchical Indexing
  • Core Functions
  • Use Cases
  • Combining H3 with Machine Learning
  • Disaster Response and Environmental Monitoring
  • Strengths and Weaknesses of H3
  • Conclusion
  • Frequently Asked Questions

What is Uber H3?

Uber H3 is an open-source, hexagonal hierarchical spatial indexing system developed by Uber. It is designed to efficiently partition and index geographic space, enabling advanced geospatial analysis, fast queries, and seamless visualization. Unlike traditional grid systems that use square or rectangular tiles, H3 utilizes hexagons, which provide superior spatial relationships, better adjacency properties, and minimize distortion when representing the Earth’s surface.

Why Uber Developed H3?

Uber developed H3 to solve key challenges in geospatial computing, particularly in ride-sharing, logistics, and location-based services. Traditional approaches based on latitude-longitude coordinates, rectangular grids, or QuadTrees often suffer from inconsistencies in resolution, inefficient spatial queries, and poor representation of real-world spatial relationships. H3 addresses these limitations by:

  • Providing a uniform, hierarchical hexagonal grid that allows for seamless scalability across different resolutions.
  • Enabling fast nearest-neighbour lookups and efficient spatial indexing for ride-demand forecasting, routing, and supply distribution.
  • Supporting spatial queries and geospatial clustering with high accuracy and minimal computational overhead.

Today, H3 is widely used in applications beyond Uber, including environmental monitoring, geospatial analytics, and geographic information systems (GIS).

What is Spatial Indexing?

Spatial indexing is a technique used to structure and organize geospatial data efficiently, allowing for fast spatial queries and improved data retrieval performance. It is crucial for tasks such as:

  • Nearest neighbor search
  • Geospatial clustering
  • Efficient geospatial joins
  • Region-based filtering

H3 enhances spatial indexing by using a hexagonal grid system, which improves spatial accuracy, provides better adjacency properties, and reduces distortions found in traditional grid-based systems.

Installation Guide (Python, JavaScript, Go, C, etc.)

공간 인덱싱을위한 UBER의 H3에 대한 안내서

Setting Up H3 in a Development Environment

Let us now set up H3 in a development environment below:

# Create a virtual environment
python -m venv h3_env
source h3_env/bin/activate  # Linux/macOS
h3_env\Scripts\activate      # Windows

# Install dependencies
pip install h3 geopandas matplotlib

Data Structure and Hierarchical Indexing

Below we will understand data structure and hierarchical indexing in detail:

Hexagonal Grid System

H3’s hexagonal grid partitions Earth into 122 base cells (resolution 0), comprising 110 hexagons and 12 pentagons to approximate spherical geometry.Each cell undergoes hierarchical subdivision usingaperture 7partitioning, where every parent hexagon contains 7 child cells at the next resolution level.This creates 16 resolution levels (0-15) with exponentially decreasing cell sizes:

Resolution Avg Edge Length (km) Avg Area (km²) Cell Count per Parent
0 1,107.712 4,250,546
5 8.544 252.903 16,807
9 0.174 0.105 40,353,607
15 0.0005 0.0000009 7^15 ≈ 4.7e12

The code below demonstrates H3’s hierarchical hexagonal grid system :

import folium
import h3

base_cell = '8001fffffffffff'  # Resolution 0 pentagon
children = h3.cell_to_children(base_cell, res=1)

# Create a map centered at the center of the base hexagon
base_center = h3.cell_to_latlng(base_cell)
GeoSpatialMap = folium.Map(location=[base_center[0], base_center[1]], zoom_start=9)

# Function to get hexagon boundaries
def get_hexagon_bounds(h3_address):
    boundaries = h3.cell_to_boundary(h3_address)
    # Folium expects coordinates in [lat, lon] format
    return [[lat, lng] for lat, lng in boundaries]

# Add base hexagon
folium.Polygon(
    locations=get_hexagon_bounds(base_cell),
    color='red',
    fill=True,
    weight=2,
    popup=f'Base: {base_cell}'
).add_to(GeoSpatialMap)

# Add children hexagons
for child in children:
    folium.Polygon(
        locations=get_hexagon_bounds(child),
        color='blue',
        fill=True,
        weight=1,
        popup=f'Child: {child}'
    ).add_to(GeoSpatialMap)

GeoSpatialMap

공간 인덱싱을위한 UBER의 H3에 대한 안내서

Resolution Levels and Hierarchical Indexing

The hierarchical indexing structure enables multi-resolution analysis through parent-child relationships.H3 supports hierarchical resolution levels (from 0 to 15), allowing data to be indexed at different granularities.

The given code below shows this relationship:

delhi_cell = h3.latlng_to_cell(28.6139, 77.2090, 9)  # New Delhi coordinates

# Traverse hierarchy upwards
parent = h3.cell_to_parent(delhi_cell, res=8)
print(f"Parent at res 8: {parent}")

# Traverse hierarchy downwards
children = h3.cell_to_children(parent, res=9)
print(f"Contains {len(children)} children")

# Create a new map centered on New Delhi
delhi_map = folium.Map(location=[28.6139, 77.2090], zoom_start=15)

# Add the parent hexagon (resolution 8)
folium.Polygon(
    locations=get_hexagon_bounds(parent),
    color='red',
    fill=True,
    weight=2,
    popup=f'Parent: {parent}'
).add_to(delhi_map)

# Add all children hexagons (resolution 9)
for child_cell in children:
    color = 'yellow' if child_cell == delhi_cell else 'blue'
    folium.Polygon(
        locations=get_hexagon_bounds(child_cell),
        color=color,
        fill=True,
        weight=1,
        popup=f'Child: {child_cell}'
    ).add_to(delhi_map)

delhi_map

공간 인덱싱을위한 UBER의 H3에 대한 안내서

H3 Index Encoding

The H3 index encodes geospatial data into a64-bit unsigned integer(commonly represented as a 15-character hexadecimal string like‘89283082837ffff’). H3 indexes have the following architecture:

4 bits 3 bits 7 bits 45 bits
Mode and Resolution Reserved Base Cell Child digits

We can understand the encoding process by the following code below:

import h3

# Convert coordinates to H3 index (resolution 9)

lat, lng = 37.7749, -122.4194  # San Francisco
h3_index = h3.latlng_to_cell(lat, lng, 9)
print(h3_index)  # '89283082803ffff'

# Deconstruct index components
## Get the resolution

resolution = h3.get_resolution(h3_index)
print(f"Resolution: {resolution}")

# Output: 9

# Get the base cell number
base_cell = h3.get_base_cell_number(h3_index)
print(f"Base cell: {base_cell}")
# Output: 20

# Check if its a pentagon
is_pentagon = h3.is_pentagon(h3_index)
print(f"Is pentagon: {is_pentagon}")
# Output: False

# Get the icosahedron face
face = h3.get_icosahedron_faces(h3_index)
print(f"Face number: {face}")
# Output: [7]

# Get the child cells
child_cells = h3.cell_to_children(h3.cell_to_parent(h3_index, 8), 9)
print(f"child cells: {child_cells}")
# Output: ['89283082803ffff', '89283082807ffff', '8928308280bffff', '8928308280fffff', 
#          '89283082813ffff', '89283082817ffff', '8928308281bffff']

Core Functions

Apart from the Hierarchical Indexing, some of the other Core functions of H3 are as follows:

  • Neighbor Lookup & Traversal
  • Polygon to H3 Indexing
  • H3 Grid Distance and K-Ring

Neighbor Lookup andTraversal

Neighbor lookup traversal refers toidentifying and navigating between adjacent cellsin Uber’s H3 hexagonal grid system. This enables spatial queries like “find all cells within a radius ofksteps” from a target cell. This concept can be understood from the code below:

import h3

# Define latitude, longitude for Kolkata
lat, lng = 22.5744, 88.3629
resolution = 9
h3_index = h3.latlng_to_cell(lat, lng, resolution)
print(h3_index)  # e.g., '89283082837ffff'

# Find all neighbors within 1 grid step
neighbors = h3.grid_disk(h3_index, k=1)
print(len(neighbors))  # 7 (6 neighbors + the original cell)

# Check edge adjacency
is_neighbor = h3.are_neighbor_cells(h3_index, neighbors[0])
print(is_neighbor)  # True or False

To generate the visualization of this we can simply use the code given below:

import h3
import folium

# Define latitude, longitude for Kolkata
lat, lng = 22.5744, 88.3629
resolution = 9  # H3 resolution

# Convert lat/lng to H3 index
h3_index = h3.latlng_to_cell(lat, lng, resolution)

# Get neighboring hexagons
neighbors = h3.grid_disk(h3_index, k=1)

# Initialize map centered at the given location
m = folium.Map(location=[lat, lng], zoom_start=12)

# Function to add hexagons to the map
def add_hexagon(h3_index, color):
    """ Adds an H3 hexagon to the folium map """
    boundary = h3.cell_to_boundary(h3_index)
    # Convert to [lat, lng] format for folium
    boundary = [[lat, lng] for lat, lng in boundary]
    folium.Polygon(
        locations=boundary,
        color=color,
        fill=True,
        fill_color=color,
        fill_opacity=0.5
    ).add_to(m)

# Add central hexagon in red
add_hexagon(h3_index, "red")

# Add neighbor hexagons in blue
for neighbor in neighbors:
    if neighbor != h3_index:  # Avoid recoloring the center
        add_hexagon(neighbor, "blue")

# Display the map
m

공간 인덱싱을위한 UBER의 H3에 대한 안내서

Use cases of Neighbor Lookup & Traversal are as follows:

  • Ride Sharing: Find available drivers within a 5-minute drive radius.
  • Spatial Aggregation: Calculate total rainfall in cells within 10 km of a flood zone.
  • Machine Learning: Generate neighborhood features for demand prediction models.

Polygon to H3 Indexing

Converting a polygon to H3 indexes involves identifying all hexagonal cells at a specified resolution thatfully or partially intersectwith the polygon. This is critical for spatial operations like aggregating data within geographic boundaries. This could be understood from the given code below:

import h3   

# Define a polygon (e.g., San Francisco bounding box)  
polygon_coords = h3.LatLngPoly(
    [(37.708, -122.507), (37.708, -122.358), (37.832, -122.358), (37.832, -122.507)]
)

# Convert polygon to H3 cells (resolution 9)  
resolution = 9  
cells = h3.polygon_to_cells(polygon_coords, res=resolution)  
print(f"Total cells: {len(cells)}")  
# Output: ~ 1651

To visualize this we can follow the given code below:

import h3
import folium
from h3 import LatLngPoly

# Define a bounding polygon for Kolkata
kolkata_coords = LatLngPoly([
    (22.4800, 88.2900),  # Southwest corner
    (22.4800, 88.4200),  # Southeast corner
    (22.5200, 88.4500),  # East
    (22.5700, 88.4500),  # Northeast
    (22.6200, 88.4200),  # North
    (22.6500, 88.3500),  # Northwest
    (22.6200, 88.2800),  # West
    (22.5500, 88.2500),  # Southwest
    (22.5000, 88.2700)   # Return to starting area
])
# Add more boundary coordinates for more specific map

# Convert polygon to H3 cells
resolution = 9
cells = h3.polygon_to_cells(kolkata_coords, res=resolution)

# Create a Folium map centered around Kolkata
kolkata_map = folium.Map(location=[22.55, 88.35], zoom_start=12)

# Add each H3 cell as a polygon
for cell in cells:
    boundaries = h3.cell_to_boundary(cell)
    # Convert to [lat, lng] format for folium
    boundaries = [[lat, lng] for lat, lng in boundaries]
    folium.Polygon(
        locations=boundaries,
        color='blue',
        weight=1,
        fill=True,
        fill_opacity=0.4,
        popup=cell
    ).add_to(kolkata_map)

# Show map
kolkata_map

공간 인덱싱을위한 UBER의 H3에 대한 안내서

H3 Grid Distance and K-Ring

Grid distancemeasures the minimum number of steps required to traverse from one H3 cell to another, moving through adjacent cells. Unlike geographical distance, it’s a topological metric based on hexagonal grid connectivity. And we should keep in mind that higher resolutions yield smaller steps so the grid distance would be larger.

import h3
from h3 import latlng_to_cell

# Define two H3 cells at resolution 9  
cell_a = latlng_to_cell(37.7749, -122.4194, 9)  # San Francisco  
cell_b = latlng_to_cell(37.3382, -121.8863, 9)  # San Jose  

# Calculate grid distance  
distance = h3.grid_distance(cell_a, cell_b)  
print(f"Grid distance: {distance} steps")  
# Output: Grid distance: 220 steps (approx)

We can visualize this with the following given code:

import h3
import folium
from h3 import latlng_to_cell
from shapely.geometry import Polygon

# Function to get H3 polygon boundary
def get_h3_polygon(h3_index):
    boundary = h3.cell_to_boundary(h3_index)
    return [(lat, lon) for lat, lon in boundary]

# Define two H3 cells at resolution 6
cell_a = latlng_to_cell(37.7749, -122.4194, 6)  # San Francisco
cell_b = latlng_to_cell(37.3382, -121.8863, 6)  # San Jose

# Get hexagon boundaries
polygon_a = get_h3_polygon(cell_a)
polygon_b = get_h3_polygon(cell_b)

# Compute grid distance
distance = h3.grid_distance(cell_a, cell_b)

# Create a folium map centered between the two locations
map_center = [(37.7749 + 37.3382) / 2, (-122.4194 + -121.8863) / 2]
m = folium.Map(location=map_center, zoom_start=9)

# Add H3 hexagons to the map
folium.Polygon(locations=polygon_a, color='blue', fill=True, fill_opacity=0.4, popup="San Francisco (H3)").add_to(m)
folium.Polygon(locations=polygon_b, color='red', fill=True, fill_opacity=0.4, popup="San Jose (H3)").add_to(m)

# Add markers for the center points
folium.Marker([37.7749, -122.4194], popup="San Francisco").add_to(m)
folium.Marker([37.3382, -121.8863], popup="San Jose").add_to(m)

# Display distance
folium.Marker(map_center, popup=f"H3 Grid Distance: {distance} steps", icon=folium.Icon(color='green')).add_to(m)

# Show the map
m

공간 인덱싱을위한 UBER의 H3에 대한 안내서

AndK-Ring(orgrid disk) in H3 refers to all hexagonal cells withinkgrid stepsfrom a central cell. This includes:

  • The central cell itself (at step 0).
  • Immediate neighbors (step 1).
  • Cells at progressively larger distances up to `k` steps.
import h3  

# Define a central cell (San Francisco at resolution 9)  
central_cell = h3.latlng_to_cell(37.7749, -122.4194, 9)  
k = 2  

# Generate K-Ring (cells within 2 steps)  
k_ring = h3.grid_disk(central_cell, k)  
print(f"Total cells: {len(k_ring)}")  # e.g., 19 cells  

This can be visualized from the plot given below:

import h3
import matplotlib.pyplot as plt
from shapely.geometry import Polygon
import geopandas as gpd

# Define central point (latitude, longitude) for San Francisco [1]
lat, lng = 37.7749, -122.4194
resolution = 9  # Choose resolution (e.g., 9) [1]

# Obtain central H3 cell index for the given point [1]
center_h3 = h3.latlng_to_cell(lat, lng, resolution)
print("Central H3 cell:", center_h3)  # Example output: '89283082837ffff'

# Define k value (number of grid steps) for the k-ring [1]
k = 2

# Generate k-ring of cells: all cells within k grid steps of centerH3 [1]
k_ring_cells = h3.grid_disk(center_h3, k)
print("Total k-ring cells:", len(k_ring_cells))
# For a standard hexagon (non-pentagon), k=2 typically returns 19 cells:
# 1 (central cell) + 6 (neighbors at distance 1) + 12 (neighbors at distance 2)

# Convert each H3 cell into a Shapely polygon for visualization [1][6]
polygons = []
for cell in k_ring_cells:
    # Get the cell boundary as a list of (lat, lng) pairs; geo_json=True returns in [lat, lng]
    boundary = h3.cell_to_boundary(cell)
    # Swap to (lng, lat) because Shapely expects (x, y)
    poly = Polygon([(lng, lat) for lat, lng in boundary])
    polygons.append(poly)

# Create a GeoDataFrame for plotting the hexagonal cells [2]
gdf = gpd.GeoDataFrame({'h3_index': list(k_ring_cells)}, geometry=polygons)

# Plot the boundaries of the k-ring cells using Matplotlib [2][6]
fig, ax = plt.subplots(figsize=(8, 8))
gdf.boundary.plot(ax=ax, color='blue', lw=1)

# Highlight the central cell by plotting its boundary in red [1]
central_boundary = h3.cell_to_boundary(center_h3)
central_poly = Polygon([(lng, lat) for lat, lng in central_boundary])
gpd.GeoSeries([central_poly]).boundary.plot(ax=ax, color='red', lw=2)

# Set plot labels and title for clear visualization
ax.set_title("H3 K-Ring Visualization (k = 2)")
ax.set_xlabel("Longitude")
ax.set_ylabel("Latitude")
plt.show()

공간 인덱싱을위한 UBER의 H3에 대한 안내서

Use Cases

While the use cases of H3 are only limited to one’s creativity, here are few examples of it :

Efficient Geo-Spatial Queries

H3 excels at optimizing location-based queries, such as counting points of interest (POIs) within dynamic geographic boundaries.

In this use case, we demonstrate how H3 can be applied to analyze and visualize ride pickup density in San Francisco using Python. To simulate real-world ride data, we generate random GPS coordinates centered around San Francisco. We also assign each ride a random timestamp within the past week to create a realistic dataset. Each ride’s latitude and longitude are converted into an H3 index at resolution 10, a fine-grained hexagonal grid that helps in spatial aggregation. To analyze local ride pickup density, we select a target H3 cell and retrieve all nearby cells within two hexagonal rings using h3.grid_disk. To visualize the spatial distribution of pickups, we overlay the H3 hexagons onto a Folium map.

Code Implementation

The execution code is given below:

import pandas as pd
import h3
import folium
import matplotlib.pyplot as plt
import numpy as np
from datetime import datetime, timedelta
import random

# Create sample GPS data around San Francisco
# Center coordinates for San Francisco
center_lat, center_lng = 37.7749, -122.4194

# Generate synthetic ride data
num_rides = 1000
np.random.seed(42)  # For reproducibility

# Generate random coordinates around San Francisco
lats = np.random.normal(center_lat, 0.02, num_rides)  # Normal distribution around center
lngs = np.random.normal(center_lng, 0.02, num_rides)

# Generate timestamps for the past week
start_time = datetime.now() - timedelta(days=7)
timestamps = [start_time + timedelta(minutes=random.randint(0, 10080)) for _ in range(num_rides)]
timestamp_strs = [ts.strftime('%Y-%m-%d %H:%M:%S') for ts in timestamps]

# Create DataFrame
rides = pd.DataFrame({
    'lat': lats,
    'lng': lngs,
    'timestamp': timestamp_strs
})

# Convert coordinates to H3 indexes (resolution 10)
rides["h3"] = rides.apply(
    lambda row: h3.latlng_to_cell(row["lat"], row["lng"], 10), axis=1  
)

# Count pickups per cell
pickup_counts = rides["h3"].value_counts().reset_index()
pickup_counts.columns = ["h3", "counts"]

# Query pickups within a specific cell and its neighbors 
target_cell = h3.latlng_to_cell(37.7749, -122.4194, 10)
neighbors = h3.grid_disk(target_cell, k=2)
local_pickups = pickup_counts[pickup_counts["h3"].isin(neighbors)]

# Visualize the spatial query results
map_center = h3.cell_to_latlng(target_cell)
m = folium.Map(location=map_center, zoom_start=15)

# Function to get hexagon boundaries
def get_hexagon_bounds(h3_address):
    boundaries = h3.cell_to_boundary(h3_address)
    return [[lat, lng] for lat, lng in boundaries]

# Add target cell
folium.Polygon(
    locations=get_hexagon_bounds(target_cell),
    color='red',
    fill=True,
    weight=2,
    popup=f'Target Cell: {target_cell}'
).add_to(m)

# Color scale for counts
max_count = local_pickups["counts"].max()
min_count = local_pickups["counts"].min()

# Add neighbor cells with color intensity based on pickup counts
for _, row in local_pickups.iterrows():
    if row["h3"] != target_cell:
        # Calculate color intensity based on count
        intensity = (row["counts"] - min_count) / (max_count - min_count) if max_count > min_count else 0.5
        color = f'#{int(255*(1-intensity)):02x}{int(200*(1-intensity)):02x}ff'
        
        folium.Polygon(
            locations=get_hexagon_bounds(row["h3"]),
            color=color,
            fill=True,
            fill_opacity=0.7,
            weight=1,
            popup=f'Cell: {row["h3"]}<br>Pickups: {row["counts"]}'
        ).add_to(m)

# Create a heatmap visualization with matplotlib
plt.figure(figsize=(12, 8))
plt.title("H3 Grid Heatmap of Ride Pickups")

# Create a scatter plot for cells, size based on pickup counts
for idx, row in local_pickups.iterrows():
    center = h3.cell_to_latlng(row["h3"])
    plt.scatter(center[1], center[0], s=row["counts"]/2, 
                c=row["counts"], cmap='viridis', alpha=0.7)

plt.colorbar(label='Number of Pickups')
plt.xlabel('Longitude')
plt.ylabel('Latitude')
plt.grid(True)

# Display both visualizations
m  # Display the folium map

공간 인덱싱을위한 UBER의 H3에 대한 안내서

공간 인덱싱을위한 UBER의 H3에 대한 안내서

The above example highlights how H3 can be leveraged for spatial analysis in urban mobility. By converting raw GPS coordinates into a hexagonal grid, we can efficiently analyze ride density, detect hotspots, and visualize data in an insightful manner. H3’s flexibility in handling different resolutions makes it a valuable tool for geospatial analytics in ride-sharing, logistics, and urban planning applications.

Combining H3 with Machine Learning

H3 has been combined with Machine Learning to solve many real world problems. Uber reduced ETA prediction errors by 22% using H3-based ML models while Toulouse, France, used H3 + ML to optimize bike lane placement, increasing ridership by 18%.

In this use case, we demonstrate how H3 can be applied to analyze and predict traffic congestion in San Francisco using historical GPS ride data and machine learning techniques.To simulate real-world traffic conditions, we generate random GPS coordinates centered around San Francisco. Each ride is assigned a random timestamp within the past week, along with a randomly generated speed value.Each ride’s latitude and longitude are converted into an H3 index at resolution 10, enabling spatial aggregation and analysis.We extract features from a sample cell and its neighboring cells within two hexagonal rings to analyze local traffic conditions.To predict traffic congestion, we use an LSTM-based deep learning model. The model is designed to process historical traffic data and predict congestion probabilities.Using the trained model, we can predict the probability of congestion for a given cell.

Code Implementation

The execution code is given below :

import h3
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import random
import tensorflow as tf
from tensorflow.keras.layers import LSTM, Conv1D, Dense

# Create sample GPS data around San Francisco
center_lat, center_lng = 37.7749, -122.4194
num_rides = 1000
np.random.seed(42)  # For reproducibility

# Generate random coordinates around San Francisco
lats = np.random.normal(center_lat, 0.02, num_rides)
lngs = np.random.normal(center_lng, 0.02, num_rides)

# Generate timestamps for the past week
start_time = datetime.now() - timedelta(days=7)
timestamps = [start_time + timedelta(minutes=random.randint(0, 10080)) for _ in range(num_rides)]
timestamp_strs = [ts.strftime('%Y-%m-%d %H:%M:%S') for ts in timestamps]

# Generate random speed data
speeds = np.random.uniform(5, 60, num_rides)  # Speed in km/h

# Create DataFrame
gps_data = pd.DataFrame({
    'lat': lats,
    'lng': lngs,
    'timestamp': timestamp_strs,
    'speed': speeds
})

# Convert coordinates to H3 indexes (resolution 10)
gps_data["h3"] = gps_data.apply(
    lambda row: h3.latlng_to_cell(row["lat"], row["lng"], 10), axis=1
)

# Convert timestamp string to datetime objects
gps_data["timestamp"] = pd.to_datetime(gps_data["timestamp"])

# Aggregate speed and count per cell per 5-minute interval
agg_data = gps_data.groupby(["h3", pd.Grouper(key="timestamp", freq="5T")]).agg(
    avg_speed=("speed", "mean"),
    vehicle_count=("h3", "count")
).reset_index()

# Example: Use a cell from our existing dataset
sample_cell = gps_data["h3"].iloc[0]
neighbors = h3.grid_disk(sample_cell, 2)

def get_kring_features(cell, k=2):
    neighbors = h3.grid_disk(cell, k)
    return {f"neighbor_{i}": neighbor for i, neighbor in enumerate(neighbors)}

# Placeholder function for feature extraction
def fetch_features(neighbors, agg_data):
    # In a real implementation, this would fetch historical data for the neighbors
    # This is just a simplified example that returns random data
    return np.random.rand(1, 6, len(neighbors))  # 1 sample, 6 timesteps, features per neighbor

# Define a skeleton model architecture
def create_model(input_shape):
    model = tf.keras.Sequential([
        LSTM(64, return_sequences=True, input_shape=input_shape),
        LSTM(32),
        Dense(16, activation='relu'),
        Dense(1, activation='sigmoid')
    ])
    model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
    return model

# Prediction function (would use a trained model in practice)
def predict_congestion(cell, model, agg_data):
    # Fetch neighbor cells
    neighbors = h3.grid_disk(cell, k=2)
    # Get historical data for neighbors
    features = fetch_features(neighbors, agg_data)
    # Predict
    return model.predict(features)[0][0]

# Create a skeleton model (not trained)
input_shape = (6, 19)  # 6 time steps, 19 features (for k=2 neighbors)
model = create_model(input_shape)

# Print information about what would happen in a real prediction
print(f"Sample cell: {sample_cell}")
print(f"Number of neighboring cells (k=2): {len(neighbors)}")
print("Model summary:")
model.summary()

# In practice, you would train the model before using it for predictions
# This would just show what a prediction call would look like:
congestion_prob = predict_congestion(sample_cell, model, agg_data)
print(f"Congestion probability: {congestion_prob:.2%}")

# example output- Congestion Probability: 49.09%

This example demonstrates how H3 can be leveraged for spatial analysis and traffic prediction. By converting GPS data into hexagonal grids, we can efficiently analyze traffic patterns, extract meaningful insights from neighboring regions, and use deep learning to predict congestion in real time. This approach can be applied to smart city planning, ride-sharing optimizations, and intelligent traffic management systems.

Disaster Response and Environmental Monitoring

Flood events representone of the mostcommon natural disasters requiring immediate response and resource allocation. H3 can significantly improve flood response efforts by integrating various data sources including flood zone maps, population density, building infrastructure, andreal-time water level readings.

The following Python implementation demonstrates howto use H3 for flood risk analysis byintegrating flooded area datawith building infrastructure information:

import h3
import folium
import pandas as pd
import numpy as np
from folium.plugins import MarkerCluster

# Create sample buildings dataset
np.random.seed(42)
num_buildings = 50

# Create buildings around San Francisco
center_lat, center_lng = 37.7749, -122.4194
building_types = ['residential', 'commercial', 'hospital', 'school', 'government']
building_weights = [0.6, 0.2, 0.1, 0.07, 0.03]  # Probability weights

# Generate building data
buildings_df = pd.DataFrame({
    'lat': np.random.normal(center_lat, 0.005, num_buildings),
    'lng': np.random.normal(center_lng, 0.005, num_buildings),
    'type': np.random.choice(building_types, size=num_buildings, p=building_weights),
    'capacity': np.random.randint(10, 1000, num_buildings)
})

# Add H3 index at resolution 10
buildings_df['h3_index'] = buildings_df.apply(
    lambda row: h3.latlng_to_cell(row['lat'], row['lng'], 10),
    axis=1
)

# Create some flood cells (let's use some cells where buildings are located)
# Taking a few cells where buildings are located to simulate a flood zone
flood_cells = set(buildings_df['h3_index'].sample(10))

# Create a map centered at the average of our coordinates
center_lat = buildings_df['lat'].mean()
center_lng = buildings_df['lng'].mean()
flood_map = folium.Map(location=[center_lat, center_lng], zoom_start=16)

# Function to get hexagon boundaries for folium
def get_hexagon_bounds(h3_address):
    boundaries = h3.cell_to_boundary(h3_address)
    # Folium expects coordinates in [lat, lng] format
    return [[lat, lng] for lat, lng in boundaries]

# Add flood zone cells
for cell in flood_cells:
    folium.Polygon(
        locations=get_hexagon_bounds(cell),
        color='blue',
        fill=True,
        fill_opacity=0.4,
        weight=2,
        popup=f'Flood Cell: {cell}'
    ).add_to(flood_map)

# Add building markers
for idx, row in buildings_df.iterrows():
    # Set color based on if building is affected
    if row['h3_index'] in flood_cells:
        color = 'red'
        icon = 'warning' if row['type'] in ['hospital', 'school'] else 'info-sign'
        prefix = 'glyphicon'
    else:
        color = 'green'
        icon = 'home'
        prefix = 'glyphicon'
    
    # Create marker with popup showing building details
    folium.Marker(
        location=[row['lat'], row['lng']],
        popup=f"Building Type: {row['type']}<br>Capacity: {row['capacity']}",
        tooltip=f"{row['type']} (Capacity: {row['capacity']})",
        icon=folium.Icon(color=color, icon=icon, prefix=prefix)
    ).add_to(flood_map)

# Add a legend as an HTML element
legend_html = '''
<div>
     <b>Flood Impact Analysis</b> <br>
     <i></i> Flood Zone <br>
     <i></i> Safe Buildings <br>
     <i></i> Affected Buildings <br>
     <i></i> Critical Facilities <br>
</div>
'''
flood_map.get_root().html.add_child(folium.Element(legend_html))

# Display the map
flood_map

공간 인덱싱을위한 UBER의 H3에 대한 안내서

This code provides an efficient method for visualizing and analyzing flood impacts using H3 spatial indexing and Folium mapping. By integrating spatial data clustering and interactive visualization, it enhances disaster response planning and urban risk management strategies. This approach can be extended to other geospatial challenges, such as wildfire risk assessment or transportation planning.

Strengths and Weaknesses of H3

The following table provides a detailed analysis of H3’s advantages and limitations based on industry implementations and technical evaluations:

Aspect Strengths Weaknesses
Geometry Properties Hexagonal cells provide uniform distance metrics with equidistant neighbors. Better approximation of circles than square/rectangular grids. Minimizes both area and shape distortion globally Cannot completely divide Earth into hexagons, requires 12 pentagon cells that create irregular adjacency patterns. Not a true equal-area system, despite aiming for “roughly equal-ish” areas
Hierarchical Structure Efficiently changes precision (resolution) levels as needed. Compact 64-bit addresses for all resolutions- Parent-child tree with no shared parents. Hierarchical nesting between resolutions isn’t perfect. Tiny discontinuities (gaps/overlaps) can occur at adjacent scales.Problematic for use cases requiring exact containment (e.g., parcel data)
Performance H3-centric approaches can be up to 90x less expensive than geometry-centric operations. Significantly enhances processing efficiency with large dataset.Fast calculations between predictable cells in grid system Processing large areas at high resolutions requires significant computational resources.Trade-off between precision and performance – higher resolutions consume more resources.
Spatial Analysis Multi-resolution analysis from neighborhood to regional scales. Standardized format for integrating heterogeneous data sources. Uniform adjacency relationships simplify neighborhood searches Polygon coverage is approximate with potential gaps at boundaries. Precision limitations dependent on chosen resolution level.Special handling required for polygon intersections
Implementation Simple API with built-in utilities (geofence polyfill, hexagon compaction, GeoJSON output)- Well-suited for parallelized execution. Cell IDs can be used as columns in standard SQL functions. Handling pentagon cells requires specialized code. Adapting existing workflows to H3 can be complex. Data quality dependencies affect analysis accuracy
Applications Optimized for: geospatial analytics, mobility analysis, logistics, delivery services, telecoms, insurance risk assessment, and environmental monitoring. Less suitable for applications requiring exact boundary definitions. May not be optimal for specialized cartographic purposes. Can involve computational complexity for real-time applications with limited resources.

Conclusion

Uber’s H3 spatial indexing system is a powerful tool for geospatial analysis, offering a hexagonal grid structure that enables efficient spatial queries, multi-resolution analysis, and seamless integration with modern data workflows. Its strengths lie in its uniform geometry, hierarchical design, and ability to handle large-scale datasets with speed and precision. From ride-sharing optimization to disaster response and environmental monitoring, H3 has proven its versatility across industries.

However, like any technology, H3 has limitations, such as handling pentagon cells, approximating polygon boundaries, and computational demands at high resolutions. By understanding its strengths and weaknesses, developers can leverage H3 effectively for applications requiring scalable and accurate geospatial insights.

As geospatial technology evolves, H3’s open-source ecosystem will likely see further enhancements, including integration with machine learning models, real-time analytics, and 3D spatial indexing. H3 is not just a tool but a foundation for building smarter geospatial solutions in an increasingly data-driven world.

Frequently Asked Questions

Q1. Where can I learn more about using H3?

A. Visit the official H3 documentation or explore open-source examples on GitHub. Uber’s engineering blog also provides insights into real-world applications of H3.

Q2. Is H3 suitable for real-time applications?

A. Yes! With its fast indexing and neighbor lookup capabilities, H3 is highly efficient for real-time geospatial applications like live traffic monitoring or disaster response coordination.

Q3. Can I use H3 with machine learning models?

A. Yes! H3 is well-suited for machine learning applications. By converting raw GPS data into hexagonal features (e.g., traffic density per cell), you can integrate spatial patterns into predictive models like demand forecasting or congestion prediction.

Q4. What programming languages are supported by H3?

A. The core H3 library is written in C but has bindings for Python, JavaScript, Go, Java, and more. This makes it versatile for integration into various geospatial workflows.

Q5. How does H3 handle the entire globe with hexagons?

A. While it’s impossible to tile a sphere perfectly with hexagons, H3 introduces 12 pentagon cells at each resolution to close gaps. To minimize their impact on most datasets, the system strategically places these pentagons over oceans or less significant areas.

The media shown in this article is not owned by Analytics Vidhya and is used at the Author’s discretion.

위 내용은 공간 인덱싱을위한 UBER의 H3에 대한 안내서의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
chatgpt를 사용할 수 없습니다! 즉시 테스트 할 수있는 원인과 솔루션 설명 [최신 2025]chatgpt를 사용할 수 없습니다! 즉시 테스트 할 수있는 원인과 솔루션 설명 [최신 2025]May 14, 2025 am 05:04 AM

chatgpt에 액세스 할 수 없습니까? 이 기사는 다양한 실용적인 솔루션을 제공합니다! 많은 사용자가 매일 chatgpt를 사용할 때 액세스 할 수 없거나 느린 응답과 같은 문제가 발생할 수 있습니다. 이 기사는 다양한 상황에 따라 이러한 문제를 단계별로 해결하도록 안내합니다. Chatgpt의 접근성 및 예비 문제 해결의 원인 먼저 문제가 OpenAI 서버 측 또는 사용자의 네트워크 또는 장치 문제에 있는지 확인해야합니다. 문제 해결을 위해 아래 단계를 따르십시오. 1 단계 : OpenAI의 공식 상태를 확인하십시오 chatgpt 서비스가 정상적으로 실행 중인지 확인하려면 OpenAi 상태 페이지 (status.openai.com)를 방문하십시오. 빨간색 또는 노란색 알람이 표시되면 열린 것을 의미합니다.

ASI의 위험을 계산하는 것은 인간의 마음으로 시작합니다ASI의 위험을 계산하는 것은 인간의 마음으로 시작합니다May 14, 2025 am 05:02 AM

2025 년 5 월 10 일, MIT 물리학 자 Max Tegmark는 AI Labs가 인공 초 지능을 방출하기 전에 Oppenheimer의 삼위 일체 테스트 미적분학을 모방해야한다고 Guardian에게 말했다. “내 평가는 'Compton Constant', 인종이

Chatgpt에서 가사를 작성하고 작곡하는 방법에 대한 이해하기 쉬운 설명Chatgpt에서 가사를 작성하고 작곡하는 방법에 대한 이해하기 쉬운 설명May 14, 2025 am 05:01 AM

AI 음악 제작 기술은 매일 매일 변화하고 있습니다. 이 기사는 Chatgpt와 같은 AI 모델을 예로 사용하여 AI를 사용하여 음악 제작을 지원하고 실제 사례에 대해 설명하는 방법을 자세히 설명합니다. 우리는 Sunoai, Hugging Face의 AI Jukebox 및 Python 's Music21 Library를 통해 음악을 만드는 방법을 소개합니다. 이러한 기술을 통해 모든 사람은 독창적 인 음악을 쉽게 만들 수 있습니다. 그러나 AI 생성 컨텐츠의 저작권 문제는 무시할 수 없으며 사용할 때는 신중해야합니다. 음악 분야에서 AI의 무한한 가능성을 모색 해 봅시다! OpenAi의 최신 AI 에이전트 "OpenAi Deep Research"가 소개됩니다. [chatgpt] ope

chatgpt-4는 무엇입니까? 당신이 할 수있는 일, 가격 및 GPT-3.5의 차이에 대한 철저한 설명!chatgpt-4는 무엇입니까? 당신이 할 수있는 일, 가격 및 GPT-3.5의 차이에 대한 철저한 설명!May 14, 2025 am 05:00 AM

ChatGpt-4의 출현은 AI 응용 프로그램의 가능성을 크게 확장했습니다. GPT-3.5와 비교하여 ChatGpt-4는 상당히 개선되었습니다. 강력한 맥락 이해력이 있으며 이미지를 인식하고 생성 할 수도 있습니다. 그것은 보편적 인 AI 조수입니다. 비즈니스 효율성 향상 및 창출 지원과 같은 많은 분야에서 큰 잠재력을 보여주었습니다. 그러나 동시에, 우리는 또한 사용의 예방 조치에주의를 기울여야합니다. 이 기사에서는 ChatGpt-4의 특성을 자세히 설명하고 다양한 시나리오에 대한 효과적인 사용 방법을 소개합니다. 이 기사에는 최신 AI 기술을 최대한 활용하는 기술이 포함되어 있습니다. OpenAi의 최신 AI 에이전트, "OpenAi Deep Research"에 대한 자세한 내용은 아래 링크를 클릭하십시오.

chatgpt 앱을 사용하는 방법을 설명하십시오! 일본 지원 및 음성 대화 기능chatgpt 앱을 사용하는 방법을 설명하십시오! 일본 지원 및 음성 대화 기능May 14, 2025 am 04:59 AM

chatgpt 앱 : AI 조수와 함께 창의력을 발휘하십시오! 초보자 가이드 Chatgpt 앱은 쓰기, 번역 및 질문 답변을 포함하여 광범위한 작업을 처리하는 혁신적인 AI 어시스턴트입니다. 창의적인 활동과 정보 수집에 유용한 끝없는 가능성이있는 도구입니다. 이 기사에서는 초보자를위한 이해하기 쉬운 방법, ChatGpt 스마트 폰 앱을 설치하는 방법, 음성 입력 기능 및 플러그인과 같은 앱의 고유 한 기능 및 앱을 사용할 때 염두에 두는 포인트에 이르기까지 설명합니다. 또한 플러그인 제한 및 장치 간 구성 동기화를 자세히 살펴 보겠습니다.

중국어 버전의 Chatgpt를 어떻게 사용합니까? 등록 절차 및 수수료에 대한 설명중국어 버전의 Chatgpt를 어떻게 사용합니까? 등록 절차 및 수수료에 대한 설명May 14, 2025 am 04:56 AM

Chatgpt Chinese 버전 : 중국 AI 대화의 새로운 경험 잠금 해제 Chatgpt는 전 세계적으로 인기가 있습니다. 중국어 버전도 제공한다는 것을 알고 있습니까? 이 강력한 AI 도구는 일상적인 대화를 지원할뿐만 아니라 전문적인 콘텐츠를 처리하며 단순화되고 전통적인 중국어와 호환됩니다. 중국의 사용자이든 중국어를 배우는 친구이든 상관없이 혜택을 누릴 수 있습니다. 이 기사는 계정 설정, 중국 신속한 단어 입력, 필터 사용 및 다양한 패키지 선택을 포함하여 ChatGpt 중국어 버전을 사용하는 방법을 자세히 소개하고 잠재적 위험 및 응답 전략을 분석합니다. 또한 ChatGpt 중국어 버전을 다른 중국 AI 도구와 비교하여 장점과 응용 프로그램 시나리오를 더 잘 이해할 수 있도록 도와줍니다. Openai의 최신 AI 인텔리전스

5 AI 요원 신화 당신은 지금 믿음을 중단해야합니다.5 AI 요원 신화 당신은 지금 믿음을 중단해야합니다.May 14, 2025 am 04:54 AM

이것들은 생성 AI 분야의 다음 도약으로 생각 될 수 있으며, 이는 우리에게 Chatgpt 및 기타 대규모 모델 챗봇을 제공했습니다. 단순히 질문에 대답하거나 정보를 생성하는 대신, 우리를 대신하여 조치를 취할 수 있습니다.

Chatgpt를 사용하여 여러 계정을 만들고 관리하는 불법성에 대한 이해하기 쉬운 설명Chatgpt를 사용하여 여러 계정을 만들고 관리하는 불법성에 대한 이해하기 쉬운 설명May 14, 2025 am 04:50 AM

ChatGpt를 사용한 효율적인 다중 계정 관리 기술 | 비즈니스와 사생활 사용 방법에 대한 철저한 설명! Chatgpt는 다양한 상황에서 사용되지만 일부 사람들은 여러 계정 관리에 대해 걱정할 수 있습니다. 이 기사는 ChatGpt에 대한 여러 계정을 만드는 방법, 사용할 때 수행 할 작업 및 안전하고 효율적으로 작동하는 방법을 자세히 설명합니다. 또한 비즈니스와 개인 사용의 차이, OpenAI의 이용 약관을 준수하는 것과 같은 중요한 점을 다루며 여러 계정을 안전하게 활용하는 데 도움이되는 안내서를 제공합니다. Openai

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

에디트플러스 중국어 크랙 버전

에디트플러스 중국어 크랙 버전

작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

SublimeText3 영어 버전

SublimeText3 영어 버전

권장 사항: Win 버전, 코드 프롬프트 지원!

맨티스BT

맨티스BT

Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

SublimeText3 Linux 새 버전

SublimeText3 Linux 새 버전

SublimeText3 Linux 최신 버전

SecList

SecList

SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.