찾다
웹 프론트엔드CSS 튜토리얼사용자 정의 속성 및 Cubic-Bezier ()를 사용하여 복잡한 CSS 전환을 구축하십시오.

Build Complex CSS Transitions using Custom Properties and cubic-bezier()

I recently illustrated how we can achieve complex CSS animations using cubic-bezier() and how to do the same when it comes to CSS transitions. I was able to create complex hover effect without resorting to keyframes. In this article, I will show you how to create even more complex CSS transitions.

This time, let’s use the @property feature. It’s only supported on Chrome-based browsers for now but we can still play with it and demonstrate how it, too, and can be used to build complex animations.

I highly recommend reading my previous article because I will be referring to a few concepts I explained in detail there. Also, please note that the demos in this article are best viewed in Chromium-based browsers while @property support is still limited.

Let’s start with a demo:

Click on the button (more than once) and see the “magic” curve we get. It may look trivial at first glance because we can achieve such effect using some complex keyframes. But the trick is that there is no keyframe in there! That animation is done using only a transition.

Awesome right? And this is only the beginning, so let’s dig in!

The main idea

The trick in the previous example relies on this code:

@property --d1 {
  syntax: '<number>';
  inherits: false;
  initial-value: 0;
}
@property --d2 {
  syntax: '<number>';
  inherits: false;
  initial-value: 0;
}

.box {
  top: calc((var(--d1) + var(--d2)) * 1%);
  transition:
    --d1 1s cubic-bezier(0.7, 1200, 0.3, -1200),
    --d2 1s cubic-bezier(0.5, 1200, 0.5, -1200);
}
.box:hover {
  --d1: 0.2;
  --d1: -0.2;
}</number></number>

We’re defining two custom properties, --d1 and --d2. Then, we declare the top property on a .box element using the sum of both those properties. Nothing overly complex yet—just calc() applied to two variables.

The two properties are defined as and I multiply those values by 1% to convert them into a percentage. We could define these as right away to avoid the multiplication. But I’ve chosen numbers instead in favor of more flexibility for more complex operations later.

Notice that we apply a different transition to each variable—more precisely, a different timing-function with the same duration. It’s actually a different sinusoidal curve for both variables which is something I get deep into in my previous article.

From there, the property values change when the .box is hovered, triggering the animation. But why do we get the result we see in the demo?

It’s all about math. We are adding two functions to create a third one. For --d1, we have a function (let’s call it F1); for --d2 , we have another one (let’s call it F2). That means the value of top is F1 + F2.

An example to better illustrate:

The first two transitions illustrate each variable individually. The third one is the sum of them. Imagine that at in each step of the animation we take the value of both variables and we add them together to get each point along the final curve.

Let’s try another example:

This time, we combine two parabolic curve to get a… well, I don’t know its name it but it’s another complex curve!

This trick is not only limited to the parabolic and sinusoidal curve. It can work with any kind of timing function even if the result won’t always be a complex curve.

This time:

  • --d1 goes from 0 to 30 with an ease-in timing function
  • --d2 goes from 0 to -20 with an ease-out timing function

The result? The top value goes from 0 to 10 (30-20) with a custom timing function (the sum of ease-in and ease-out).

We are not getting a complex transition in this case—it’s more to illustrate the fact that it’s a generic idea not only limited to cubic-bezier().

I think it’s time for an interactive demo.

All you have to do is to adjust a few variables to build your own complex transition. I know cubic-bezier() may be tricky, so consider using this online curve generator and also refer to my previous article.

Here are some examples I made:

As you can see, we can combine two different timing functions (created using cubic-bezier() ) to create a third one, complex enough to achieve a fancy transition. The combinations (and possibilities) are unlimited!

In that last example, I wanted to demonstrate how adding two opposite functions lead to the logical result of a constant function (no transition). Hence, the flat line.

Let’s add more variables!

You thought we’d stop at only two variables? Certainly not! We can extend the logic to N variables. There is no restriction—we define each one with a timing function and sum them up.

An example with three variables:

In most cases, two variables are plenty to create a fancy curve, but it’s neat to know that the trick can be extended to more variables.

Can we subract, multiply and divide variables?

Of course! We can also extend the same idea to consider more operations. We can add, subtract, multiply, divide—and even perform a complex formula between variables.

Here, we’re multiplying values:

We can also use one variable and multiply it by itself to get a quadratic function!

Let’s add more fun in there by introducing min()/max() to simulate an abs() function:

Notice that in the second box we will never get higher than the center point on the y-axis because top is always a positive value. (I added a margin-top to make the center of box the reference for 0.)

I won’t get into all the math, but you can imagine the possibilities we have to create any kind of timing function. All we have to do is to find the right formula either using one variable or combining multiple variables.

Our initial code can be generalized:

@property --d1 { /* we do the same for d2 .. dn */
  syntax: '<number>';
  inherits: false;
  initial-value: i1; /* the initial value can be different for each variable */
}

.box {
  --duration: 1s; /* the same duration for all */
  property: calc(f(var(--d1),var(--d2), .. ,var(--dn))*[1UNIT]);
  transition:
    --d1 var(--duration) cubic-bezier( ... ),
    --d2 var(--duration) cubic-bezier( ... ),
    /* .. */
    --dn var(--duration) cubic-bezier( ... );
}
.box:hover {
  --d1:f1;
  --d2:f2;
  /* .. */
  --dn:f3;
}</number>

This is pseudo-code to illustrate the logic:

  1. We use @property to define numeric custom properties, each with an initial value.
  2. Each variable has its own timing function but the same duration.
  3. We define an f function that is the formula used between the variables. The function provides a number that we use to multiply the relevant unit. All this runs in calc() applied to the property.
  4. We update the value of each variable on hover (or toggle, or whatever).

Given this, the property transitions from f(i1,i2,…,in) to f(f1,f2,..,fn) with a custom timing function.

Chaining timing functions

We’ve reached the point where we were able to create a complex timing function by combining basic ones. Let’s try another idea that allow us to have more complex timing function: chaining timing functions together.

The trick is to run the transitions sequentially using the transition-delay property. Let’s look back at the interactive demo and apply a delay to one of the variables:

We are chaining timing functions instead of adding them together for yet another way to create more complex timing functions! Mathematically, it’s still a sum, but since the transitions do not run at the same time, we will be summing a function with a constant, and that simulates the chaining.

Now imagine the case with N variables that we are incrementally delayed. Not only can we create complex transitions this way, but we have enough flexibility to build complex timelines.

Here is a funny hover effect I built using that technique:

You will find no keyframes there. A small action scene is made entirely using one element and a CSS transition.

Here is a realistic pendulum animation using the same idea:

Or, how about a ball that bounces naturally:

Or maybe a ball rolling along a curve:

See that? We just created complex animations without a single keyframe in the code!

That’s a wrap!

I hope you took three key points away from this article and the previous one:

  1. We can get parabolic and sinusoidal curves using cubic-bezier() that allow us to create complex transitions without keyframes.
  2. We can create more curves by combining different timing functions using custom properties and calc().
  3. We can chain the curves using the transition-delay to build a complex timeline.

Thanks to these three features, we have no limits when it comes to creating complex animations.

위 내용은 사용자 정의 속성 및 Cubic-Bezier ()를 사용하여 복잡한 CSS 전환을 구축하십시오.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
'Podcast 구독'링크는 어디에서 링크해야합니까?'Podcast 구독'링크는 어디에서 링크해야합니까?Apr 16, 2025 pm 12:04 PM

한동안 iTunes는 팟 캐스팅에서 큰 개 였으므로 "Podcast 구독"을 링크 한 경우 다음과 같습니다.

브라우저 엔진 다양성브라우저 엔진 다양성Apr 16, 2025 pm 12:02 PM

우리는 그들이 2013 년에 크롬에 갔을 때 오페라를 잃었습니다. 올해 초 크롬 (Chrome)에 갔을 때 Edge와 같은 거래를했습니다. Mike Taylor는 이러한 변화를 "감소 적으로"불렀습니다

웹 공유에 대한 UX 고려 사항웹 공유에 대한 UX 고려 사항Apr 16, 2025 am 11:59 AM

Trashy Clickbait 사이트에서 가장 8 월 출판물에 이르기까지 공유 버튼은 웹 전체에서 오랫동안 어디서 유비쿼터스되었습니다. 그럼에도 불구하고 이것들은 논쟁의 여지가 있습니다

Weekly Platform News : Apple은 웹 구성 요소, 프로그레시브 HTML 렌더링, 자체 호스팅 중요한 리소스를 배포합니다.Weekly Platform News : Apple은 웹 구성 요소, 프로그레시브 HTML 렌더링, 자체 호스팅 중요한 리소스를 배포합니다.Apr 16, 2025 am 11:55 AM

이번 주에 Apple은 웹 구성 요소, Instagram이 Insta-Loading 스크립트의 방법 및 자조적 자체 호스팅 리소스를 생각하기위한 음식을 웹 구성 요소에 들어갑니다.

Git Pathspecs 및 사용 방법Git Pathspecs 및 사용 방법Apr 16, 2025 am 11:53 AM

GIT 명령의 문서를 살펴 보았을 때 많은 사람들이 옵션이 있음을 알았습니다. 나는 처음에 이것이 단지 a라고 생각했다

제품 이미지를위한 컬러 피커제품 이미지를위한 컬러 피커Apr 16, 2025 am 11:49 AM

어려운 문제가 어려운 것 같지 않습니다. 우리는 종종 수천 가지 색상의 제품 샷을 가지고 있으므로 우리는 다음과 같이 뒤집을 수 있습니다. 우리도 아닙니다

Dark Mode는 React 및 Temprovider로 전환합니다Dark Mode는 React 및 Temprovider로 전환합니다Apr 16, 2025 am 11:46 AM

웹 사이트에 어두운 모드 옵션이있을 때 좋아합니다. 다크 모드는 웹 페이지를 더 쉽게 읽을 수있게하고 눈이 더 편안하다고 느끼도록 도와줍니다. 많은 웹 사이트를 포함합니다

HTML 대화 요소와 함께 일부 실습HTML 대화 요소와 함께 일부 실습Apr 16, 2025 am 11:33 AM

이것은 처음으로 HTML 요소를보고 있습니다. 나는 그것을 잠시 동안 알고 있었지만 아직 스핀을 위해 그것을 가져 갔다. 그것은 꽤 시원하고 있습니다

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
4 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
4 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
4 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 채팅 명령 및 사용 방법
4 몇 주 전By尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

Eclipse용 SAP NetWeaver 서버 어댑터

Eclipse용 SAP NetWeaver 서버 어댑터

Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

에디트플러스 중국어 크랙 버전

에디트플러스 중국어 크랙 버전

작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

MinGW - Windows용 미니멀리스트 GNU

MinGW - Windows용 미니멀리스트 GNU

이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.