import java.util.ArrayList; public class SkipList { // Node of the SkipList public static class SkipListNode<k extends comparable>, V> { public K key; public V value; public ArrayList<skiplistnode v>> nextNodes; public SkipListNode(K key, V value) { this.key = key; this.value = value; nextNodes = new ArrayList<skiplistnode v>>(); } } // SkipList public static class SkipListMap<k extends comparable>, V> { public static final double PROBABILITY = 0.5; // Probability for level generation public SkipListNode<k v> head; public int maxLevel; // Maximum level in the SkipList public int size; public SkipListMap() { // The head is the leftmost "platform" this.head = new SkipListNode(null, null); head.nextNodes.add(null); // Level 0 this.size = 0; this.maxLevel = 0; } // Add a node to the SkipList public void put(K key, V value) { if (key == null) { return; } // Check if the key already exists in the SkipList, update the value if so // Method: Find the rightmost node less than the key at the bottom level SkipListNode<k v> less = mostRightLessNodeInTree(key); // less.nextNodes.get(0) -- SkipListNode<k v> find = less.nextNodes.get(0); if (find.key.compareTo(key) == 0) { find.value = value; } else { // Generate a random level for the new node int newNodeLevel = 0; while (Math.random() maxLevel) { maxLevel++; head.nextNodes.add(null); } SkipListNode<k v> newNode = new SkipListNode(key, value); for (int i = 0; i pre = head; while (level >= 0) { // Find the predecessor node at the current level pre = mostRightLessNodeInLevel(pre, key, level); // Insert the new node between the predecessor and its successor if (level pre = head; while (level >= 0) { // Find the predecessor node at the current level pre = mostRightLessNodeInLevel(pre, key, level); // Remove the node SkipListNode<k v> next = pre.nextNodes.get(level); if (next != null && next.key.compareTo(key) == 0) { pre.nextNodes.set(level, next.nextNodes.get(level)); } // If a level has only the head node left, remove this level if (level != 0 && pre == head && pre.nextNodes.get(level) == null) { head.nextNodes.remove(level); maxLevel--; } level--; } } // Start from the top level and traverse down to find the rightmost node less than the key at level 0 public SkipListNode<k v> mostRightLessNodeInTree(K key) { if (key == null) { return null; } int level = maxLevel; SkipListNode<k v> cur = head; while (level >= 0) { cur = mostRightLessNodeInLevel(cur, key, level); level--; } return cur; } // At a specific level, find the rightmost node less than the key public SkipListNode<k v> mostRightLessNodeInLevel(SkipListNode<k v> cur, K key, int level) { if (key == null) { return null; } SkipListNode<k v> pre = null; cur = cur.nextNodes.get(level); while (cur.key.compareTo(key) less = mostRightLessNodeInTree(key); SkipListNode<k v> find = less.nextNodes.get(0); return find != null && find.key.compareTo(key) == 0; } } } </k></k></k></k></k></k></k></k></k></k></k></k></skiplistnode></skiplistnode></k>
위 내용은 Java로 건너뛰기 목록 작성의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Bytecodeachievesplatformincendence는 executedbirtualmachine (vm)을 beenecutedbyavirtmachine (vm)을 허용합니다

Java는 100% 플랫폼 독립성을 달성 할 수 없지만 플랫폼 독립성은 JVM 및 바이트 코드를 통해 구현되어 코드가 다른 플랫폼에서 실행되도록합니다. 특정 구현에는 다음이 포함됩니다. 1. 바이트 코드로의 컴파일; 2. JVM의 해석 및 실행; 3. 표준 라이브러리의 일관성. 그러나 JVM 구현 차이, 운영 체제 및 하드웨어 차이, 타사 라이브러리의 호환성은 플랫폼 독립성에 영향을 줄 수 있습니다.

Java는 "Writ 2. 유지 보수 비용이 낮 으면 하나의 수정 만 필요합니다. 3. 높은 팀 협업 효율성은 높고 지식 공유에 편리합니다.

새로운 플랫폼에서 JVM을 만드는 주요 과제에는 하드웨어 호환성, 운영 체제 호환성 및 성능 최적화가 포함됩니다. 1. 하드웨어 호환성 : JVM이 RISC-V와 같은 새로운 플랫폼의 프로세서 명령어 세트를 올바르게 사용할 수 있도록해야합니다. 2. 운영 체제 호환성 : JVM은 Linux와 같은 새로운 플랫폼의 시스템 API를 올바르게 호출해야합니다. 3. 성능 최적화 : 성능 테스트 및 튜닝이 필요하며 쓰레기 수집 전략은 새로운 플랫폼의 메모리 특성에 적응하도록 조정됩니다.

javafxeffecticallydressessplatforminconsistenciesinguedevelopment는 aplatform-agnosticscenegraphandcsstyling을 사용하여 development.1) itabstractsplatformspecificsthroughascenegraph, csstyling allowsforfine-tunin을 보장합니다

JVM은 Java 코드를 기계 코드로 변환하고 리소스를 관리하여 작동합니다. 1) 클래스로드 : .class 파일을 메모리에로드하십시오. 2) 런타임 데이터 영역 : 메모리 영역 관리. 3) 실행 엔진 : 해석 또는 컴파일 바이트 코드. 4) 로컬 메소드 인터페이스 : JNI를 통해 운영 체제와 상호 작용합니다.

JVM을 통해 Java는 플랫폼을 가로 질러 실행할 수 있습니다. 1) JVM 하중, 검증 및 바이트 코드를 실행합니다. 2) JVM의 작업에는 클래스 로딩, 바이트 코드 검증, 해석 실행 및 메모리 관리가 포함됩니다. 3) JVM은 동적 클래스 로딩 및 반사와 같은 고급 기능을 지원합니다.

Java 응용 프로그램은 다음 단계를 통해 다른 운영 체제에서 실행할 수 있습니다. 1) 파일 또는 경로 클래스를 사용하여 파일 경로를 처리합니다. 2) system.getenv ()를 통해 환경 변수를 설정하고 얻습니다. 3) Maven 또는 Gradle을 사용하여 종속성 및 테스트를 관리하십시오. Java의 크로스 플랫폼 기능은 JVM의 추상화 계층에 의존하지만 여전히 특정 운영 체제 별 기능의 수동 처리가 필요합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

드림위버 CS6
시각적 웹 개발 도구

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경
