현재 모범 사례를 사용하여 .NET에서 비밀번호를 안전하게 해시합니다.
데이터베이스에 비밀번호를 저장할 때 해싱 알고리즘을 사용하여 민감한 정보를 보호하는 것이 중요합니다. 암호화 방법은 이 목적에 적합하지 않습니다. .NET에서 가장 좋은 기본 암호 해싱 알고리즘은 PBKDF2(Password-Based Key Derivation Function 2)입니다.
PBKDF2를 사용한 비밀번호 해싱 단계별 안내
1단계: 소금 값 생성
솔트는 각 비밀번호의 해시를 고유하게 만드는 데 사용되는 임의의 값입니다. 암호화 PRNG(의사 난수 생성기)를 사용하여 솔트 값을 생성합니다.
byte[] salt; new RNGCryptoServiceProvider().GetBytes(salt = new byte[16]);
2단계: PBKDF2 객체 생성 및 해시 값 계산
Rfc2898DeriveBytes
클래스를 인스턴스화하고 비밀번호, 솔트 및 원하는 반복 횟수(최대 100,000회 권장)를 지정합니다.
var pbkdf2 = new Rfc2898DeriveBytes(password, salt, 100000); byte[] hash = pbkdf2.GetBytes(20);
3단계: 저장을 위해 솔트 및 암호화 바이트 결합
솔트와 비밀번호 바이트를 결합하여 데이터베이스 저장을 위한 단일 문자열을 만듭니다.
byte[] hashBytes = new byte[36]; Array.Copy(salt, 0, hashBytes, 0, 16); Array.Copy(hash, 0, hashBytes, 16, 20);
4단계: Base64 문자열로 변환하여 저장
결합된 바이트를 데이터베이스에 저장하기 위해 Base64 문자열로 인코딩합니다.
string savedPasswordHash = Convert.ToBase64String(hashBytes);
5단계: 사용자가 입력한 비밀번호 확인
사용자가 입력한 비밀번호가 저장된 해시와 일치하는지 확인하려면:
- 데이터베이스에서 저장된 비밀번호 해시를 가져옵니다.
- 저장된 해시 값에서 솔트 및 해시 바이트를 추출합니다.
- 사용자가 입력한 비밀번호와 추출된 솔트를 사용하여 새로운 해시를 계산합니다.
- 계산된 해시와 저장된 해시를 비교합니다. 일치하면 비밀번호가 유효한 것입니다.
string savedPasswordHash = DBContext.GetUser(u => u.UserName == user).Password; byte[] hashBytes = Convert.FromBase64String(savedPasswordHash); byte[] salt = new byte[16]; Array.Copy(hashBytes, 0, salt, 0, 16); var pbkdf2 = new Rfc2898DeriveBytes(password, salt, 100000); byte[] hash = pbkdf2.GetBytes(20); for (int i=0; i < 20; i++) if (hashBytes[i+16] != hash[i]) throw new UnauthorizedAccessException();
참고: 반복 횟수는 애플리케이션의 성능 요구 사항에 따라 조정될 수 있습니다. 일반적으로 권장되는 최소값은 10,000입니다.
위 내용은 PBKDF2를 사용하여 .NET에서 비밀번호를 안전하게 해시하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

C에서 다형성을 마스터하면 코드 유연성과 유지 관리가 크게 향상 될 수 있습니다. 1) 다형성은 다른 유형의 물체를 동일한 기본 유형의 물체로 취급 할 수 있도록합니다. 2) 상속 및 가상 기능을 통해 런타임 다형성을 구현합니다. 3) 다형성은 기존 클래스를 수정하지 않고 코드 확장을 지원합니다. 4) CRTP를 사용하여 컴파일 타임 다형성을 구현하면 성능이 향상 될 수 있습니다. 5) 스마트 포인터는 자원 관리를 돕습니다. 6) 기본 클래스에는 가상 파괴자가 있어야합니다. 7) 성능 최적화는 먼저 코드 분석이 필요합니다.

C Destructorsprovideprepisecontroloverresourcemanagement, whilegarbagecollectorsautomatememormanorymanagementbutintroction.c 파괴자 : 1) 허용 customcleanupactionswhenobjectsaredestroyed, 2) ggooutofscop을 방출하는 것은 즉시 방출

1) Pugixml 또는 TinyXML 라이브러리를 사용하여 XML 파일을 구문 분석하고 생성하는 데 도움이 될 수 있습니다. 2) 구문 분석을위한 DOM 또는 SAX 방법을 선택하고, 3) 중첩 노드 및 다단계 속성을 처리, 4) 디버깅 기술 및 모범 사례를 사용하여 성능을 최적화하십시오.

XML은 데이터, 특히 구성 파일, 데이터 저장 및 네트워크 통신에서 데이터를 구조화하는 편리한 방법을 제공하기 때문에 C에서 사용됩니다. 1) TinyXML, PugixML, RapidXML과 같은 적절한 라이브러리를 선택하고 프로젝트 요구에 따라 결정하십시오. 2) XML 파싱 및 생성의 두 가지 방법을 이해하십시오. DOM은 자주 액세스 및 수정에 적합하며 SAX는 큰 파일 또는 스트리밍 데이터에 적합합니다. 3) 성능을 최적화 할 때 TinyXML은 작은 파일에 적합하며 PugixML은 메모리와 속도에서 잘 작동하며 RapidXML은 큰 파일을 처리하는 데 탁월합니다.

C#과 C의 주요 차이점은 메모리 관리, 다형성 구현 및 성능 최적화입니다. 1) C#은 쓰레기 수집기를 사용하여 메모리를 자동으로 관리하는 반면 C는 수동으로 관리해야합니다. 2) C#은 인터페이스 및 가상 방법을 통해 다형성을 실현하고 C는 가상 함수와 순수한 가상 함수를 사용합니다. 3) C#의 성능 최적화는 구조 및 병렬 프로그래밍에 따라 다르며 C는 인라인 함수 및 멀티 스레딩을 통해 구현됩니다.

DOM 및 SAX 방법은 XML 데이터를 C에서 구문 분석하는 데 사용될 수 있습니다. 1) DOM 파싱은 XML로드를 메모리로, 작은 파일에 적합하지만 많은 메모리를 차지할 수 있습니다. 2) Sax Parsing은 이벤트 중심이며 큰 파일에 적합하지만 무작위로 액세스 할 수는 없습니다. 올바른 방법을 선택하고 코드를 최적화하면 효율성이 향상 될 수 있습니다.

C는 고성능과 유연성으로 인해 게임 개발, 임베디드 시스템, 금융 거래 및 과학 컴퓨팅 분야에서 널리 사용됩니다. 1) 게임 개발에서 C는 효율적인 그래픽 렌더링 및 실시간 컴퓨팅에 사용됩니다. 2) 임베디드 시스템에서 C의 메모리 관리 및 하드웨어 제어 기능이 첫 번째 선택이됩니다. 3) 금융 거래 분야에서 C의 고성능은 실시간 컴퓨팅의 요구를 충족시킵니다. 4) 과학 컴퓨팅에서 C의 효율적인 알고리즘 구현 및 데이터 처리 기능이 완전히 반영됩니다.

C는 죽지 않았지만 많은 주요 영역에서 번성했습니다 : 1) 게임 개발, 2) 시스템 프로그래밍, 3) 고성능 컴퓨팅, 4) 브라우저 및 네트워크 응용 프로그램, C는 여전히 유명한 활력 및 응용 시나리오를 보여줍니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

드림위버 CS6
시각적 웹 개발 도구

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.