이 기사에서는 텍스트 쌍 간의 유사성을 평가하도록 설계된 정교한 신경망인 HybridSimilarity 알고리즘을 살펴봅니다. 이 하이브리드 모델은 포괄적인 유사성 점수를 얻기 위해 어휘, 음성, 의미 및 구문 비교를 교묘하게 통합합니다.
<code class="language-python">import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import TruncatedSVD from sentence_transformers import SentenceTransformer from Levenshtein import ratio as levenshtein_ratio from phonetics import metaphone import torch import torch.nn as nn class HybridSimilarity(nn.Module): def __init__(self): super().__init__() self.bert = SentenceTransformer('all-MiniLM-L6-v2') self.tfidf = TfidfVectorizer() self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4) self.fc = nn.Sequential( nn.Linear(1152, 256), nn.ReLU(), nn.LayerNorm(256), nn.Linear(256, 1), nn.Sigmoid() ) def _extract_features(self, text1, text2): # Feature Extraction features = {} # Lexical Analysis features['levenshtein'] = levenshtein_ratio(text1, text2) features['jaccard'] = len(set(text1.split()) & set(text2.split())) / len(set(text1.split()) | set(text2.split())) # Phonetic Analysis features['metaphone'] = 1.0 if metaphone(text1) == metaphone(text2) else 0.0 # Semantic Analysis (BERT) emb1 = self.bert.encode(text1, convert_to_tensor=True) emb2 = self.bert.encode(text2, convert_to_tensor=True) features['semantic_cosine'] = nn.CosineSimilarity()(emb1, emb2).item() # Syntactic Analysis (LSA-TFIDF) tfidf_matrix = self.tfidf.fit_transform([text1, text2]) svd = TruncatedSVD(n_components=1) lsa = svd.fit_transform(tfidf_matrix) features['lsa_cosine'] = np.dot(lsa[0], lsa[1].T)[0][0] # Attention Mechanism att_output, _ = self.attention( emb1.unsqueeze(0).unsqueeze(0), emb2.unsqueeze(0).unsqueeze(0), emb2.unsqueeze(0).unsqueeze(0) ) features['attention_score'] = att_output.mean().item() return torch.tensor(list(features.values())).unsqueeze(0) def forward(self, text1, text2): features = self._extract_features(text1, text2) return self.fc(features).item() def similarity_coefficient(text1, text2): model = HybridSimilarity() return model(text1, text2)</code>
HybridSimilarity 모델은 다음과 같은 주요 구성 요소에 의존합니다.
HybridSimilarity
을 확장하는 nn.Module
클래스는 다음을 초기화합니다.
all-MiniLM-L6-v2
).<code class="language-python">self.bert = SentenceTransformer('all-MiniLM-L6-v2') self.tfidf = TfidfVectorizer() self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4) self.fc = nn.Sequential( nn.Linear(1152, 256), nn.ReLU(), nn.LayerNorm(256), nn.Linear(256, 1), nn.Sigmoid() )</code>
_extract_features
방법은 여러 유사성 특징을 계산합니다.
<code class="language-python">features['levenshtein'] = levenshtein_ratio(text1, text2) features['jaccard'] = len(set(text1.split()) & set(text2.split())) / len(set(text1.split()) | set(text2.split()))</code>
<code class="language-python">features['metaphone'] = 1.0 if metaphone(text1) == metaphone(text2) else 0.0</code>
<code class="language-python">emb1 = self.bert.encode(text1, convert_to_tensor=True) emb2 = self.bert.encode(text2, convert_to_tensor=True) features['semantic_cosine'] = nn.CosineSimilarity()(emb1, emb2).item()</code>
TruncatedSVD
을 사용하여 LSA를 적용합니다.<code class="language-python">tfidf_matrix = self.tfidf.fit_transform([text1, text2]) svd = TruncatedSVD(n_components=1) lsa = svd.fit_transform(tfidf_matrix) features['lsa_cosine'] = np.dot(lsa[0], lsa[1].T)[0][0]</code>
<code class="language-python">att_output, _ = self.attention( emb1.unsqueeze(0).unsqueeze(0), emb2.unsqueeze(0).unsqueeze(0), emb2.unsqueeze(0).unsqueeze(0) ) features['attention_score'] = att_output.mean().item()</code>
추출된 특징은 결합되어 완전히 연결된 신경망에 공급됩니다. 이 네트워크는 유사성 점수(0-1)를 출력합니다.
<code class="language-python">import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import TruncatedSVD from sentence_transformers import SentenceTransformer from Levenshtein import ratio as levenshtein_ratio from phonetics import metaphone import torch import torch.nn as nn class HybridSimilarity(nn.Module): def __init__(self): super().__init__() self.bert = SentenceTransformer('all-MiniLM-L6-v2') self.tfidf = TfidfVectorizer() self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4) self.fc = nn.Sequential( nn.Linear(1152, 256), nn.ReLU(), nn.LayerNorm(256), nn.Linear(256, 1), nn.Sigmoid() ) def _extract_features(self, text1, text2): # Feature Extraction features = {} # Lexical Analysis features['levenshtein'] = levenshtein_ratio(text1, text2) features['jaccard'] = len(set(text1.split()) & set(text2.split())) / len(set(text1.split()) | set(text2.split())) # Phonetic Analysis features['metaphone'] = 1.0 if metaphone(text1) == metaphone(text2) else 0.0 # Semantic Analysis (BERT) emb1 = self.bert.encode(text1, convert_to_tensor=True) emb2 = self.bert.encode(text2, convert_to_tensor=True) features['semantic_cosine'] = nn.CosineSimilarity()(emb1, emb2).item() # Syntactic Analysis (LSA-TFIDF) tfidf_matrix = self.tfidf.fit_transform([text1, text2]) svd = TruncatedSVD(n_components=1) lsa = svd.fit_transform(tfidf_matrix) features['lsa_cosine'] = np.dot(lsa[0], lsa[1].T)[0][0] # Attention Mechanism att_output, _ = self.attention( emb1.unsqueeze(0).unsqueeze(0), emb2.unsqueeze(0).unsqueeze(0), emb2.unsqueeze(0).unsqueeze(0) ) features['attention_score'] = att_output.mean().item() return torch.tensor(list(features.values())).unsqueeze(0) def forward(self, text1, text2): features = self._extract_features(text1, text2) return self.fc(features).item() def similarity_coefficient(text1, text2): model = HybridSimilarity() return model(text1, text2)</code>
similarity_coefficient
함수는 모델을 초기화하고 두 입력 텍스트 간의 유사성을 계산합니다.
<code class="language-python">self.bert = SentenceTransformer('all-MiniLM-L6-v2') self.tfidf = TfidfVectorizer() self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4) self.fc = nn.Sequential( nn.Linear(1152, 256), nn.ReLU(), nn.LayerNorm(256), nn.Linear(256, 1), nn.Sigmoid() )</code>
유사성을 나타내는 0과 1 사이의 부동 소수점을 반환합니다.
HybridSimilarity 알고리즘은 텍스트 비교의 다양한 측면을 통합하여 텍스트 유사성에 대한 강력한 접근 방식을 제공합니다. 어휘, 음성, 의미 및 구문 분석의 조합을 통해 텍스트 유사성에 대한 보다 포괄적이고 미묘한 이해가 가능하므로 중복 감지, 텍스트 클러스터링, 정보 검색을 비롯한 다양한 애플리케이션에 적합합니다.
위 내용은 하이브리드 유사성 알고리즘의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!