다중 테이블, 다중 열 SQL 쿼리 최적화
여러 테이블에서 데이터를 검색하면 특히 다양한 열의 값을 집계해야 하는 경우 문제가 발생하는 경우가 많습니다. 최근 지원 사례에서는 두 테이블의 여러 열에 걸쳐 값을 정확하게 계산하는 데 있어 사용자의 어려움이 강조되었습니다. 중첩된 하위 쿼리를 사용한 초기 시도에서는 잘못된 결과가 나왔습니다.
결함이 있는 쿼리는 다음과 같습니다.
SELECT * from ( SELECT COUNT(DAY_IN) AS arr FROM t_hospital WHERE DAY_IN between @start_check and @finish_check and RES_DATE between @start_res and @finish_res and ID_daily_hos =@daily_hos group by DAY_IN )e, (SELECT COUNT(PAT_STATUS) AS ONG1 FROM t_hospital WHERE PAT_STATUS like '%ong%' and DAY_IN between @start_check and @finish_check and RES_DATE between @start_res and @finish_res and ID_daily_hos =@daily_hos group by DAY_IN ) a, (SELECT COUNT(PAT_STATUS) AS RTED FROM t_hospital WHERE PAT_STATUS like '%rtde%'and DAY_IN between @start_check and @finish_check and RES_DATE between @start_res and @finish_res and ID_daily_hos =@daily_hos group by DAY_IN )b, (SELECT COUNT(PAT_STATUS) AS POLI FROM t_hospital WHERE PAT_STATUS like '%pol%'and DAY_IN between @start_check and @finish_check and RES_DATE between @start_res and @finish_res and ID_daily_hos =@daily_hos group by DAY_IN )c, (SELECT COUNT(PAT_STATUS) AS para FROM t_hospital WHERE PAT_STATUS like '%para%' and DAY_IN between @start_check and @finish_check and RES_DATE between @start_res and @finish_res and ID_daily_hos =@daily_hos group by DAY_IN )d
해결책은 단일 쿼리 내에서 조건부 집계를 사용하는 것입니다. 이 간소화된 접근 방식은 지정된 조건을 기반으로 여러 열을 계산하여 정확한 결과를 제공합니다. 개선된 쿼리는 다음과 같습니다.
SELECT DAY_IN, COUNT(*) AS arr, SUM(IF(PAT_STATUS like '%ong%', 1, 0)) AS ONG1, SUM(IF(PAT_STATUS like '%rtde%', 1, 0)) AS RTED, SUM(IF(PAT_STATUS like '%pol%', 1, 0)) AS POL1, SUM(IF(PAT_STATUS like '%para%', 1, 0)) AS para FROM t_hospital WHERE DAY_IN between @start_check and @finish_check and RES_DATE between @start_res and @finish_res and ID_daily_hos =@daily_hos GROUP BY DAY_IN
이 수정된 쿼리는 필요한 데이터를 효율적으로 검색하여 원래의 지나치게 복잡한 구조와 관련된 오류를 제거합니다. 핵심은 조건부 SUM()
문
위 내용은 SQL의 서로 다른 테이블에서 여러 열을 효율적으로 쿼리하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

이 기사는 MySQL의 Alter Table 문을 사용하여 열 추가/드롭 테이블/열 변경 및 열 데이터 유형 변경을 포함하여 테이블을 수정하는 것에 대해 설명합니다.

기사는 인증서 생성 및 확인을 포함하여 MySQL에 대한 SSL/TLS 암호화 구성에 대해 설명합니다. 주요 문제는 자체 서명 인증서의 보안 영향을 사용하는 것입니다. [문자 수 : 159]

기사는 MySQL에서 파티셔닝, 샤딩, 인덱싱 및 쿼리 최적화를 포함하여 대규모 데이터 세트를 처리하기위한 전략에 대해 설명합니다.

기사는 MySQL Workbench 및 Phpmyadmin과 같은 인기있는 MySQL GUI 도구에 대해 논의하여 초보자 및 고급 사용자를위한 기능과 적합성을 비교합니다. [159 자].

이 기사에서는 Drop Table 문을 사용하여 MySQL에서 테이블을 떨어 뜨리는 것에 대해 설명하여 예방 조치와 위험을 강조합니다. 백업 없이는 행동이 돌이킬 수 없으며 복구 방법 및 잠재적 생산 환경 위험을 상세하게합니다.

기사는 외국 열쇠를 사용하여 데이터베이스의 관계를 나타내고 모범 사례, 데이터 무결성 및 피할 수있는 일반적인 함정에 중점을 둡니다.

이 기사에서는 PostgreSQL, MySQL 및 MongoDB와 같은 다양한 데이터베이스에서 JSON 열에서 인덱스를 작성하여 쿼리 성능을 향상시킵니다. 특정 JSON 경로를 인덱싱하는 구문 및 이점을 설명하고 지원되는 데이터베이스 시스템을 나열합니다.

기사는 준비된 명령문, 입력 검증 및 강력한 암호 정책을 사용하여 SQL 주입 및 무차별 적 공격에 대한 MySQL 보안에 대해 논의합니다 (159 자)


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구

드림위버 CS6
시각적 웹 개발 도구

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

뜨거운 주제



