이 기사에서는 AWS에 확장 가능한 상태 저장 Streamlit 애플리케이션을 배포하는 방법을 자세히 설명하고 로컬 개발에서 프로덕션 클라우드 환경으로 이동할 때 직면하는 일반적인 문제를 해결합니다. 특히 과부하 상태에서 페이지를 새로 고치거나 서버를 다시 시작할 때 데이터가 손실되는 Streamlit의 기본 인메모리 상태 관리의 한계를 극복하는 데 중점을 두고 있습니다.
Streamlit의 확장성 과제: Streamlit은 빠른 웹 앱 개발에 탁월하지만 고유한 인메모리 상태 관리는 다중 사용자, 클라우드 기반 배포에 적합하지 않습니다. 단순히 VM 리소스를 늘리는 것은 데이터 지속성의 핵심 문제를 해결하지 못하는 근시안적인 솔루션입니다.
제안된 아키텍처(AWS): 제시된 솔루션은 확장성과 상태 저장을 처리하기 위해 강력한 아키텍처를 사용합니다.
- Application Load Balancer(ALB): 들어오는 트래픽을 여러 인스턴스에 균등하게 분산합니다.
- Fargate의 ECS(Elastic Container Service): Docker 컨테이너를 관리하여 서버 관리 오버헤드 없이 손쉽게 확장할 수 있습니다. 비용 효율성을 위해 arm64 아키텍처와 최적화된 리소스 할당(0.25vCPU/0.5GB RAM)을 활용합니다.
- 탄력적 파일 시스템(EFS): 여러 ECS 노드에 마운트되는 확장 가능하고 지속적인 파일 시스템을 제공합니다. 이를 통해 가용 영역(AZ) 전체에서 데이터 중복성과 지속성을 보장하여 핵심 상태 저장 문제를 해결합니다.
- CloudFront(선택 사항): CDN 기능을 통해 성능을 향상하고 HTTPS 보안을 추가합니다.
AWS Lambda를 사용하면 안 되는 이유: Lambda는 서버리스 컴퓨팅에 매력적이지만 Streamlit은 Lambda의 API 게이트웨이가 지원하지 않는 websocket 바이너리 프레임에 의존하기 때문에 Streamlit과 호환되지 않습니다.
EFS와 기타 옵션: 비교표는 RDS, DynamoDB, ElasticCache, S3와 같은 대안에 비해 EFS의 장점을 강조하고 특정 항목에 대한 설정 용이성, 확장성 및 비용 효율성을 강조합니다. 사용 사례.
로드 밸런서 비용 해결: 이 기사에서는 ALB의 고유 비용을 인정하지만 특히 향상된 안정성과 성능을 고려할 때 ALB의 이점(트래픽 분산, HTTP/2 지원, AWS 통합)이 비용보다 더 크다고 주장합니다. 제작 신청을 위해.
솔루션 접근 방식: 이 솔루션의 핵심은 세션 키용 브라우저 측 로컬 스토리지(streamlit-local-storage
를 통해)와 영구 세션 데이터용 EFS의 조합을 사용하는 것입니다. 이를 통해 ECS 노드 및 확장 이벤트 전반에 걸쳐 데이터 지속성을 보장하면서 메모리 내 상태를 최소화합니다. 이 접근 방식의 단순성이 강조됩니다. 핵심 애플리케이션 코드는 로컬 개발과 클라우드 배포 간에 크게 변경되지 않습니다.
프로젝트 템플릿 및 의사 코드: 샘플 LLM 챗봇 프로젝트(https://www.php.cn/link/f3a3cc4e1b8b4b0438505c0a38efad9f)가 세션 데이터가 어떻게 작동하는지 보여주는 의사 코드와 함께 제공됩니다. 직렬화에는 pickle
을, 저장에는 EFS를 사용하여 관리됩니다. 이 코드는 고유한 세션 ID를 기반으로 세션 데이터를 검색하고 저장하여 서로 다른 ECS 작업이 동일한 세션을 처리하는 경우에도 일관성을 보장하는 방법을 보여줍니다.
배포 단계: 이 문서에서는 저장소 복제, CloudFormation 스택 배포, Docker 이미지 구축 및 배포, 챗봇 액세스, (암시적으로) 자동 활성화 등 애플리케이션 배포에 대한 간결한 가이드를 제공합니다. 최적의 확장성을 위한 확장.
결론: 이 접근 방식은 확장 가능한 상태 저장 Streamlit 애플리케이션을 AWS에 배포하기 위한 실용적이고 효율적인 솔루션을 제공하므로 개발자는 복잡한 인프라 관리가 아닌 애플리케이션 로직에 집중할 수 있습니다. 이 솔루션은 데이터 지속성과 고가용성을 보장하는 동시에 단순성과 비용 효율성을 우선시합니다.
위 내용은 AWS ECS 및 EFS를 사용하여 상태 저장 스트림릿 챗봇 확장의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

이 튜토리얼은 Python을 사용하여 Zipf의 법칙의 통계 개념을 처리하는 방법을 보여주고 법을 처리 할 때 Python의 읽기 및 대형 텍스트 파일을 정렬하는 효율성을 보여줍니다. ZIPF 분포라는 용어가 무엇을 의미하는지 궁금 할 것입니다. 이 용어를 이해하려면 먼저 Zipf의 법칙을 정의해야합니다. 걱정하지 마세요. 지침을 단순화하려고 노력할 것입니다. Zipf의 법칙 Zipf의 법칙은 단순히 : 큰 자연어 코퍼스에서 가장 자주 발생하는 단어는 두 번째 빈번한 단어, 세 번째 빈번한 단어보다 세 번, 네 번째 빈번한 단어 등 4 배나 자주 발생합니다. 예를 살펴 보겠습니다. 미국 영어로 브라운 코퍼스를 보면 가장 빈번한 단어는 "TH입니다.

이 기사에서는 HTML을 구문 분석하기 위해 파이썬 라이브러리 인 아름다운 수프를 사용하는 방법을 설명합니다. 데이터 추출, 다양한 HTML 구조 및 오류 처리 및 대안 (SEL과 같은 Find (), find_all (), select () 및 get_text ()와 같은 일반적인 방법을 자세히 설명합니다.

시끄러운 이미지를 다루는 것은 특히 휴대폰 또는 저해상도 카메라 사진에서 일반적인 문제입니다. 이 튜토리얼은 OpenCV를 사용 하여이 문제를 해결하기 위해 Python의 이미지 필터링 기술을 탐구합니다. 이미지 필터링 : 강력한 도구 이미지 필터

PDF 파일은 운영 체제, 읽기 장치 및 소프트웨어 전체에서 일관된 콘텐츠 및 레이아웃과 함께 크로스 플랫폼 호환성에 인기가 있습니다. 그러나 Python Processing Plain Text 파일과 달리 PDF 파일은 더 복잡한 구조를 가진 이진 파일이며 글꼴, 색상 및 이미지와 같은 요소를 포함합니다. 다행히도 Python의 외부 모듈로 PDF 파일을 처리하는 것은 어렵지 않습니다. 이 기사는 PYPDF2 모듈을 사용하여 PDF 파일을 열고 페이지를 인쇄하고 텍스트를 추출하는 방법을 보여줍니다. PDF 파일의 생성 및 편집에 대해서는 저의 다른 튜토리얼을 참조하십시오. 준비 핵심은 외부 모듈 PYPDF2를 사용하는 데 있습니다. 먼저 PIP를 사용하여 설치하십시오. PIP는 p입니다

이 튜토리얼은 Redis 캐싱을 활용하여 특히 Django 프레임 워크 내에서 Python 응용 프로그램의 성능을 향상시키는 방법을 보여줍니다. 우리는 Redis 설치, Django 구성 및 성능 비교를 다루어 Bene을 강조합니다.

이 기사는 딥 러닝을 위해 텐서 플로와 Pytorch를 비교합니다. 데이터 준비, 모델 구축, 교육, 평가 및 배포와 관련된 단계에 대해 자세히 설명합니다. 프레임 워크, 특히 계산 포도와 관련하여 주요 차이점

데이터 과학 및 처리가 가장 좋아하는 Python은 고성능 컴퓨팅을위한 풍부한 생태계를 제공합니다. 그러나 Python의 병렬 프로그래밍은 독특한 과제를 제시합니다. 이 튜토리얼은 이러한 과제를 탐구하며 전 세계 해석에 중점을 둡니다.

이 튜토리얼은 Python 3에서 사용자 정의 파이프 라인 데이터 구조를 작성하여 클래스 및 작업자 과부하를 활용하여 향상된 기능을 보여줍니다. 파이프 라인의 유연성은 일련의 기능을 데이터 세트, GE에 적용하는 능력에 있습니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구

Dreamweaver Mac版
시각적 웹 개발 도구

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.
