커피 한잔 사주세요😄
*메모:
- 내 게시물에는 OxfordIIITPet()에 대한 설명이 나와 있습니다.
CenterCrop()은 아래와 같이 이미지를 중심으로 0개 이상의 이미지를 자를 수 있습니다.
*메모:
- 초기화를 위한 첫 번째 인수는 size(Required-Type:int, float 또는 tuple/list(int 또는 float) 또는 size())입니다.
*메모:
- [높이,너비] 입니다.
- 0
- 튜플/리스트는 요소가 1개 또는 2개 있는 1D여야 합니다.
- 단일 값(int, float 또는 tuple/list(int 또는 float))은 [크기, 크기]를 의미합니다.
- 첫 번째 인수는 img(필수 유형:PIL 이미지 또는 텐서(int, float, complex 또는 bool))입니다.
*메모:
- 텐서는 0개 이상의 요소로 구성된 2D 이상의 D여야 합니다.
- img=을 사용하지 마세요.
- v2는 V1 또는 V2에 따라 사용하는 것이 좋습니다? 어느 것을 사용해야 합니까?.
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import CenterCrop centercrop = CenterCrop(size=100) centercrop # CenterCrop(size=(100, 100)) centercrop.size # (100, 100) origin_data = OxfordIIITPet( root="data", transform=None ) p600_data = OxfordIIITPet( root="data", transform=CenterCrop(size=600) # transform=CenterCrop(size=[600]) # transform=CenterCrop(size=[600, 600]) ) p400_data = OxfordIIITPet( root="data", transform=CenterCrop(size=400) ) p200_data = OxfordIIITPet( root="data", transform=CenterCrop(size=200) ) p100_data = OxfordIIITPet( root="data", transform=CenterCrop(size=100) ) p50_data = OxfordIIITPet( root="data", transform=CenterCrop(size=50) ) p10_data = OxfordIIITPet( root="data", transform=CenterCrop(size=10) ) p200p300_data = OxfordIIITPet( root="data", transform=CenterCrop(size=[200, 300]) ) p300p200_data = OxfordIIITPet( root="data", transform=CenterCrop(size=[300, 200]) ) import matplotlib.pyplot as plt def show_images1(data, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.tight_layout() plt.show() show_images1(data=origin_data, main_title="origin_data") show_images1(data=p600_data, main_title="p600_data") show_images1(data=p400_data, main_title="p400_data") show_images1(data=p200_data, main_title="p200_data") show_images1(data=p100_data, main_title="p100_data") show_images1(data=p50_data, main_title="p50_data") show_images1(data=p10_data, main_title="p10_data") print() show_images1(data=p200p300_data, main_title="p200p300_data") show_images1(data=p300p200_data, main_title="p300p200_data") # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ def show_images2(data, main_title=None, s=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) if not s: s = [im.size[1], im.size[0]] cc = CenterCrop(size=s) # Here plt.imshow(X=cc(im)) # Here plt.tight_layout() plt.show() show_images2(data=origin_data, main_title="origin_data") show_images2(data=origin_data, main_title="p600_data", s=600) show_images2(data=origin_data, main_title="p400_data", s=400) show_images2(data=origin_data, main_title="p200_data", s=200) show_images2(data=origin_data, main_title="p100_data", s=100) show_images2(data=origin_data, main_title="p50_data", s=50) show_images2(data=origin_data, main_title="p10_data", s=10) print() show_images2(data=origin_data, main_title="origin_data") show_images2(data=origin_data, main_title="p200p300_data", s=[200, 300]) show_images2(data=origin_data, main_title="p300p200_data", s=[300, 200])
위 내용은 PyTorch의 CenterCrop의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Tomergelistsinpython, youcanusethe operator, extendmethod, listcomprehension, oritertools.chain, 각각은 각각의 지위를 불러 일으킨다

Python 3에서는 다양한 방법을 통해 두 개의 목록을 연결할 수 있습니다. 1) 작은 목록에 적합하지만 큰 목록에는 비효율적입니다. 2) 메모리 효율이 높지만 원래 목록을 수정하는 큰 목록에 적합한 확장 방법을 사용합니다. 3) 원래 목록을 수정하지 않고 여러 목록을 병합하는 데 적합한 * 운영자 사용; 4) 메모리 효율이 높은 대형 데이터 세트에 적합한 itertools.chain을 사용하십시오.

join () 메소드를 사용하는 것은 Python의 목록에서 문자열을 연결하는 가장 효율적인 방법입니다. 1) join () 메소드를 사용하여 효율적이고 읽기 쉽습니다. 2)주기는 큰 목록에 비효율적으로 운영자를 사용합니다. 3) List Comprehension과 Join ()의 조합은 변환이 필요한 시나리오에 적합합니다. 4) READE () 방법은 다른 유형의 감소에 적합하지만 문자열 연결에 비효율적입니다. 완전한 문장은 끝납니다.

pythonexecutionissprocessoftransformingpythoncodeintoExecutableInstructions.1) the -interreadsTheCode, ConvertingItintoByTecode, thethepythonVirtualMachine (pvm)을 실행합니다

Python의 주요 특징은 다음과 같습니다. 1. 구문은 간결하고 이해하기 쉽고 초보자에게 적합합니다. 2. 개발 속도 향상, 동적 유형 시스템; 3. 여러 작업을 지원하는 풍부한 표준 라이브러리; 4. 광범위한 지원을 제공하는 강력한 지역 사회와 생태계; 5. 스크립팅 및 빠른 프로토 타이핑에 적합한 해석; 6. 다양한 프로그래밍 스타일에 적합한 다중-파라 디그 지원.

Python은 해석 된 언어이지만 편집 프로세스도 포함됩니다. 1) 파이썬 코드는 먼저 바이트 코드로 컴파일됩니다. 2) 바이트 코드는 Python Virtual Machine에 의해 해석되고 실행됩니다. 3)이 하이브리드 메커니즘은 파이썬이 유연하고 효율적이지만 완전히 편집 된 언어만큼 빠르지는 않습니다.

USEAFORLOOPHENTERATINGOVERASERASERASPECIFICNUMBEROFTIMES; USEAWHILLOOPWHENTINUTIMONDITINISMET.FORLOOPSAREIDEALFORKNOWNSEDINGENCENCENS, WHILEWHILELOOPSSUITSITUATIONS WITHERMINGEDERITERATIONS.

Pythonloopscanleadtoerrors likeinfiniteloops, modifyinglistsdizeration, off-by-by-byerrors, zero-indexingissues, andnestedloopineficiencies.toavoidthese : 1) aing'i


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

Dreamweaver Mac版
시각적 웹 개발 도구

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.