이전 게시물에서 Docker 튜토리얼에 대해 언급한 적이 있습니다.
- https://dev.to/omerberatzezer/docker-tutorial-dockerfile-commands-container-images-volume-network-docker-compose-2p9h
이번에는 샘플 프로젝트를 실행하기 시작합니다. Nodejs, Flask, PostgreSQL 이미지가 포함된 Docker Compose 파일에 중점을 두고 다양한 계층을 구현합니다.
- 프런트엔드(expressjs가 포함된 nodejs),
- 백엔드(플라스크),
- 데이터베이스(postgresql).
다음 내용을 보여줍니다.
- 여러 컨테이너를 실행하는 방법
- dependent_on을 사용하여 컨테이너를 순차적으로 실행하는 방법
- 동일 네트워크에서 컨테이너를 실행하는 방법
- 작성 파일에서 볼륨을 생성하는 방법
- 포트포워딩 구현 방법
GitHub 코드 저장소: https://github.com/omerbsezer/Fast-Docker/tree/main/hands-on-sample-projects/full-stack-app
프로젝트 구조:
project-root/ ├── docker-compose.yaml ├── frontend/ │ ├── package.json │ ├── index.js │ ├── index.html │ ├── Dockerfile ├── backend/ │ ├── app.py │ ├── requirements.txt │ ├── Dockerfile
- 프런트엔드 디렉터리를 만들고 Dockerfile을 만듭니다.
FROM node:18 WORKDIR /home/app COPY . . EXPOSE 3000 RUN npm install CMD ["npm", "start"]
- index.html 만들기:
<meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Frontend</title> <h1 id="Frontend-is-working">Frontend is working!</h1>
- index.js(익스프레스 js) 만들기:
const express = require("express"); const app = express(); const port=3000; app.get("/", (req, res) => { res.sendFile(__dirname + "/index.html"); }) app.listen(port, () => { console.log(`running at port ${port}`); });
- package.json 만들기:
{ "name": "nodejsapp", "version": "1.0.0", "description": "nodejsapp description", "main": "index.js", "scripts": { "test": "echo \"Error: no test specified\" && exit 1", "start": "node index.js" }, "author": "", "license": "ISC", "dependencies": { "express": "^4.17.3" } }
- 그런 다음 백엔드 디렉터리를 만들고 Dockerfile을 만듭니다.
FROM python:3.11 WORKDIR /usr/src/app COPY . . RUN pip install -r requirements.txt EXPOSE 5000 CMD ["python", "app.py"]
- Flask를 사용하여 백엔드 앱 만들기:
from flask import Flask, jsonify app = Flask(__name__) @app.route('/') def home(): return "Backend is working!" @app.route('/api', methods=['GET']) def api(): return jsonify({"message": "Hello from the backend!"}) if __name__ == '__main__': app.run(host='0.0.0.0', port=5000)
- requirements.txt 만들기:
flask
- 마지막으로 백엔드 및 프런트엔드 디렉터리 위에 docker-compose.yaml을 만듭니다.
services: frontend: build: context: ./frontend container_name: frontend ports: - "3000:3000" volumes: - ./frontend:/usr/src/app depends_on: - backend backend: build: context: ./backend container_name: backend ports: - "5000:5000" volumes: - ./backend:/usr/src/app command: sh -c "pip install -r requirements.txt && python app.py" db: image: postgres:15 container_name: db environment: POSTGRES_USER: user POSTGRES_PASSWORD: password POSTGRES_DB: mydatabase volumes: - db_data:/var/lib/postgresql/data ports: - "5432:5432" volumes: db_data:
- 그런 다음 docker-compose.yaml이 있는 위치에서 명령을 실행합니다.
user@docker:~$ docker compose up -d [+] Running 4/4 ✔ Network node_default Created 0.1s ✔ Container db Started 0.7s ✔ Container backend Started 0.7s ✔ Container frontend Started
- 그런 다음 컬을 사용하여 프런트엔드와 백엔드를 확인합니다.
user@docker:~$ curl http://localhost:3000 <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Frontend</title> <h1 id="Frontend-is-working">Frontend is working!</h1> user@docker:~$ curl http://localhost:5000/api {"message":"Hello from the backend!"} user@docker:~$ curl http://localhost:5000 Backend is working!
- 마지막으로 컨테이너를 중지합니다.
user@docker:~$ docker ps -a CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES 3e51751b546c node-frontend "docker-entrypoint.s…" About a minute ago Up About a minute 0.0.0.0:3000->3000/tcp, :::3000->3000/tcp frontend d8d28325ce10 postgres:15 "docker-entrypoint.s…" About a minute ago Up About a minute 0.0.0.0:5432->5432/tcp, :::5432->5432/tcp db 04c1d04a5668 node-backend "sh -c 'pip install …" About a minute ago Up About a minute 0.0.0.0:5000->5000/tcp, :::5000->5000/tcp backend user@docker:~$ docker compose down [+] Running 4/4 ✔ Container frontend Removed 1.0s ✔ Container db Removed 0.5s ✔ Container backend Removed 10.5s ✔ Network node_default Removed 0.2s user@docker:~$ docker ps -a CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
결론
이 게시물에서는 샘플 프런트엔드(express.js), 백엔드(flask), 데이터베이스(postgresql) 앱을 사용하여 Docker Compose 파일을 생성하는 방법을 보여줍니다. 이전에 본 적이 없다면 아래 메뉴에서 다른 Docker 콘텐츠를 살펴보세요.
AWS, Kubernetes, Docker, Linux, DevOps, Ansible, Machine Learning, Generative AI, SAAS에 대한 팁, 튜토리얼, Hands-On Lab을 팔로우하세요.
- https://github.com/omerbsezer/
- https://www.linkedin.com/in/omerberatzezer/
위 내용은 Docker 실습: Nodejs, Flask, PostgreSQL을 사용하여 Docker Compose 파일 알아보기의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

JavaScript는 프론트 엔드 및 백엔드 개발에 사용할 수 있습니다. 프론트 엔드는 DOM 작업을 통해 사용자 경험을 향상시키고 백엔드는 Node.js를 통해 서버 작업을 처리합니다. 1. 프론트 엔드 예 : 웹 페이지 텍스트의 내용을 변경하십시오. 2. 백엔드 예제 : node.js 서버를 만듭니다.

Python 또는 JavaScript는 경력 개발, 학습 곡선 및 생태계를 기반으로해야합니다. 1) 경력 개발 : Python은 데이터 과학 및 백엔드 개발에 적합한 반면 JavaScript는 프론트 엔드 및 풀 스택 개발에 적합합니다. 2) 학습 곡선 : Python 구문은 간결하며 초보자에게 적합합니다. JavaScript Syntax는 유연합니다. 3) 생태계 : Python에는 풍부한 과학 컴퓨팅 라이브러리가 있으며 JavaScript는 강력한 프론트 엔드 프레임 워크를 가지고 있습니다.

JavaScript 프레임 워크의 힘은 개발 단순화, 사용자 경험 및 응용 프로그램 성능을 향상시키는 데 있습니다. 프레임 워크를 선택할 때 : 1. 프로젝트 규모와 복잡성, 2. 팀 경험, 3. 생태계 및 커뮤니티 지원.

서론 나는 당신이 이상하다는 것을 알고 있습니다. JavaScript, C 및 Browser는 정확히 무엇을해야합니까? 그들은 관련이없는 것처럼 보이지만 실제로는 현대 웹 개발에서 매우 중요한 역할을합니다. 오늘 우리는이 세 가지 사이의 밀접한 관계에 대해 논의 할 것입니다. 이 기사를 통해 브라우저에서 JavaScript가 어떻게 실행되는지, 브라우저 엔진의 C 역할 및 웹 페이지의 렌더링 및 상호 작용을 유도하기 위해 함께 작동하는 방법을 알게됩니다. 우리는 모두 JavaScript와 브라우저의 관계를 알고 있습니다. JavaScript는 프론트 엔드 개발의 핵심 언어입니다. 브라우저에서 직접 실행되므로 웹 페이지를 생생하고 흥미롭게 만듭니다. 왜 Javascr

Node.js는 크림 덕분에 효율적인 I/O에서 탁월합니다. 스트림은 메모리 오버로드를 피하고 큰 파일, 네트워크 작업 및 실시간 애플리케이션을위한 메모리 과부하를 피하기 위해 데이터를 점차적으로 처리합니다. 스트림을 TypeScript의 유형 안전과 결합하면 Powe가 생성됩니다

파이썬과 자바 스크립트 간의 성능과 효율성의 차이는 주로 다음과 같이 반영됩니다. 1) 해석 된 언어로서, 파이썬은 느리게 실행되지만 개발 효율이 높고 빠른 프로토 타입 개발에 적합합니다. 2) JavaScript는 브라우저의 단일 스레드로 제한되지만 멀티 스레딩 및 비동기 I/O는 Node.js의 성능을 향상시키는 데 사용될 수 있으며 실제 프로젝트에서는 이점이 있습니다.

JavaScript는 1995 년에 시작하여 Brandon Ike에 의해 만들어졌으며 언어를 C로 실현했습니다. 1.C Language는 JavaScript의 고성능 및 시스템 수준 프로그래밍 기능을 제공합니다. 2. JavaScript의 메모리 관리 및 성능 최적화는 C 언어에 의존합니다. 3. C 언어의 크로스 플랫폼 기능은 자바 스크립트가 다른 운영 체제에서 효율적으로 실행하는 데 도움이됩니다.

JavaScript는 브라우저 및 Node.js 환경에서 실행되며 JavaScript 엔진을 사용하여 코드를 구문 분석하고 실행합니다. 1) 구문 분석 단계에서 초록 구문 트리 (AST)를 생성합니다. 2) 컴파일 단계에서 AST를 바이트 코드 또는 기계 코드로 변환합니다. 3) 실행 단계에서 컴파일 된 코드를 실행하십시오.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기