다작 작가로서 Amazon에서 제 책을 탐색해 보시기 바랍니다. 지속적인 지원과 업데이트를 받으려면 Medium에서 저를 팔로우하세요. 소중한 후원 감사드립니다!
수년간 텍스트 처리 및 분석에 중점을 둔 Python 개발을 통해 효율적인 기술의 중요성을 배웠습니다. 이 기사에서는 NLP 프로젝트 성능을 높이기 위해 제가 자주 사용하는 6가지 고급 Python 방법을 강조합니다.
정규 표현식(re 모듈)
정규 표현식은 패턴 일치와 텍스트 조작에 필수적입니다. Python의 re
모듈은 강력한 툴킷을 제공합니다. 정규식을 익히면 복잡한 텍스트 처리가 단순화됩니다.
예를 들어 이메일 주소 추출:
import re text = "Contact us at info@example.com or support@example.com" email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b' emails = re.findall(email_pattern, text) print(emails)
출력: ['info@example.com', 'support@example.com']
Regex는 텍스트 대체에도 뛰어납니다. 달러 금액을 유로로 변환:
text = "The price is .99" new_text = re.sub(r'$(\d+\.\d{2})', lambda m: f"€{float(m.group(1))*0.85:.2f}", text) print(new_text)
출력: "The price is €9.34"
문자열 모듈 유틸리티
Python의 string
모듈은 re
보다 눈에 띄지는 않지만 번역 테이블 생성이나 문자열 상수 처리와 같은 텍스트 처리에 유용한 상수와 기능을 제공합니다.
구두점 제거:
import string text = "Hello, World! How are you?" translator = str.maketrans("", "", string.punctuation) cleaned_text = text.translate(translator) print(cleaned_text)
출력: "Hello World How are you"
시퀀스 비교를 위한 difflib
문자열을 비교하거나 유사점을 식별하는 것이 일반적입니다. difflib
은 이러한 목적에 이상적인 서열 비교 도구를 제공합니다.
비슷한 단어 찾기:
from difflib import get_close_matches words = ["python", "programming", "code", "developer"] similar = get_close_matches("pythonic", words, n=1, cutoff=0.6) print(similar)
출력: ['python']
SequenceMatcher
는 더 복잡한 비교를 처리합니다.
from difflib import SequenceMatcher def similarity(a, b): return SequenceMatcher(None, a, b).ratio() print(similarity("python", "pyhton"))
출력: (대략) 0.83
퍼지 매칭을 위한 Levenshtein 거리
Levenshtein 거리 알고리즘(종종 python-Levenshtein
라이브러리 사용)은 철자 검사 및 퍼지 일치에 필수적입니다.
맞춤법 검사:
import Levenshtein def spell_check(word, dictionary): return min(dictionary, key=lambda x: Levenshtein.distance(word, x)) dictionary = ["python", "programming", "code", "developer"] print(spell_check("progamming", dictionary))
출력: "programming"
비슷한 문자열 찾기:
def find_similar(word, words, max_distance=2): return [w for w in words if Levenshtein.distance(word, w) <= max_distance] print(find_similar("code", ["code", "coder", "python"]))
출력: ['code', 'coder']
텍스트 인코딩 수정을 위한 ftfy
ftfy
라이브러리는 인코딩 문제를 해결하여 mojibake와 같은 일반적인 문제를 자동으로 감지하고 수정합니다.
모지바케 수정:
import ftfy text = "The Mona Lisa doesn’t have eyebrows." fixed_text = ftfy.fix_text(text) print(fixed_text)
출력: "The Mona Lisa doesn't have eyebrows."
유니코드 정규화:
weird_text = "This is Fullwidth text" normal_text = ftfy.fix_text(weird_text) print(normal_text)
출력: "This is Fullwidth text"
spaCy 및 NLTK를 통한 효율적인 토큰화
토큰화는 NLP의 기본입니다. spaCy
및 NLTK
은 단순한 split()
이상의 고급 토큰화 기능을 제공합니다.
spaCy를 사용한 토큰화:
import re text = "Contact us at info@example.com or support@example.com" email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b' emails = re.findall(email_pattern, text) print(emails)
출력: ['The', 'quick', 'brown', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog', '.']
NLTK의 word_tokenize
:
text = "The price is .99" new_text = re.sub(r'$(\d+\.\d{2})', lambda m: f"€{float(m.group(1))*0.85:.2f}", text) print(new_text)
출력: (spaCy와 유사)
실제 적용 및 모범 사례
이러한 기술은 텍스트 분류, 감정 분석 및 정보 검색에 적용 가능합니다. 대규모 데이터 세트의 경우 메모리 효율성(생성기)을 우선시하고, CPU 바인딩 작업에 다중 처리를 활용하고, 적절한 데이터 구조(멤버십 테스트를 위한 세트)를 사용하고, 반복 사용을 위해 정규식을 컴파일하고, CSV 처리를 위해 팬더와 같은 라이브러리를 활용하세요.
이러한 기술과 모범 사례를 구현하면 텍스트 처리 워크플로우의 효율성과 효과를 크게 향상시킬 수 있습니다. 이러한 귀중한 기술을 익히려면 지속적인 연습과 실험이 중요하다는 점을 기억하세요.
101권
Aarav Joshi가 공동 설립한 AI 기반 출판사인 101 Books는 첨단 AI 기술 덕분에 합리적인 가격에 고품질의 도서를 제공합니다. Amazon에서 Golang Clean Code를 확인해보세요. 더 많은 타이틀과 특별 할인을 보려면 "Aarav Joshi"를 검색하세요!
우리의 창작물
Investor Central, Investor Central(스페인어/독일어), Smart Living, Epochs & Echoes, Puzzling Mysteries, Hindutva, Elite Dev, JS Schools
Medium에 있습니다
Tech Koala Insights, Epochs & Echoes World, Investor Central 매체, Puzzling Mysteries 매체, Science & Epochs 매체, Modern Hindutva
위 내용은 효율적인 텍스트 처리 및 분석을 위한 고급 Python 기술의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Python List 슬라이싱의 기본 구문은 목록 [start : stop : step]입니다. 1. Start는 첫 번째 요소 인덱스, 2.Stop은 첫 번째 요소 인덱스가 제외되고 3. Step은 요소 사이의 단계 크기를 결정합니다. 슬라이스는 데이터를 추출하는 데 사용될뿐만 아니라 목록을 수정하고 반전시키는 데 사용됩니다.

ListSoutPerformArraysin : 1) DynamicsizingandFrequentInsertions/Deletions, 2) StoringHeterogeneousData 및 3) MemoryEfficiencyForsParsEdata, butMayHavesLightPerformanceCosceperationOperations.

TOCONVERTAPYTHONARRAYTOALIST, USETHELIST () CONSTUCTORORAGENERATERATOREXPRESSION.1) importTheArrayModuleAndCreateAnarray.2) USELIST (ARR) 또는 [XFORXINARR] TOCONVERTITTOALIST.

chooSearRaysOverListSinpyTonforBetTerferformanceAndMemoryEfficiencyInspecificscenarios.1) arrgenumericalDatasets : arraysreducememoryUsage.2) Performance-CriticalOperations : ArraysofferspeedboostsfortaskslikeApenorsearching.3) TypeSenforc

파이썬에서는 루프에 사용하여 열거 및 추적 목록에 대한 이해를 나열 할 수 있습니다. Java에서는 루프를 위해 전통적인 사용 및 루프가 트래버스 어레이를 향해 향상시킬 수 있습니다. 1. Python 목록 트래버스 방법에는 다음이 포함됩니다. 루프, 열거 및 목록 이해력. 2. Java 어레이 트래버스 방법에는 다음이 포함됩니다. 루프 용 전통 및 루프를위한 향상.

이 기사는 버전 3.10에 도입 된 Python의 새로운 "매치"진술에 대해 논의하며, 이는 다른 언어로 된 문장과 동등한 역할을합니다. 코드 가독성을 향상시키고 기존 IF-ELIF-EL보다 성능 이점을 제공합니다.

Python 3.11의 예외 그룹은 여러 예외를 동시에 처리하여 동시 시나리오 및 복잡한 작업에서 오류 관리를 향상시킵니다.

Python의 기능 주석은 유형 확인, 문서 및 IDE 지원에 대한 기능에 메타 데이터를 추가합니다. 코드 가독성, 유지 보수를 향상 시키며 API 개발, 데이터 과학 및 라이브러리 생성에 중요합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

WebStorm Mac 버전
유용한 JavaScript 개발 도구

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

mPDF
mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.
