이 가이드에서는 Facenet-pytorch를 사용하는 얼굴 유사성 감지 도구를 보여줍니다. FaceNet 모델의 고품질 얼굴 임베딩을 활용하는 이 도구는 대상 이미지를 여러 후보와 비교하여 가장 가까운 일치 항목을 식별합니다. 구현을 살펴보겠습니다.
필수 도구 및 라이브러리
- PyTorch: 딥 러닝 운영의 기반
- FaceNet-PyTorch: 얼굴 감지 및 임베딩 생성을 위해 사전 훈련된 모델을 제공합니다.
- 베개(PIL): 이미지 조작 작업을 처리합니다.
- Matplotlib: 결과 시각화에 사용됩니다.
두 가지 핵심 모델이 사용됩니다.
- MTCNN: 이미지 내에서 얼굴을 감지합니다.
- InceptionResnetV1: 얼굴 임베딩을 추출합니다.
초기화
import torch from facenet_pytorch import MTCNN, InceptionResnetV1 from PIL import Image import requests from io import BytesIO import matplotlib.pyplot as plt # Initialize face detection (MTCNN) and embedding extraction (InceptionResnetV1) modules. mtcnn = MTCNN(image_size=160, keep_all=True) resnet = InceptionResnetV1(pretrained='vggface2').eval()
함수 정의
1. 이미지 로딩 및 임베딩 추출:
이 함수는 URL에서 이미지를 검색하고, 얼굴을 감지하고, 임베딩을 계산합니다.
def get_embedding_and_face(image_path): """Loads an image, detects faces, and returns the embedding and detected face.""" try: response = requests.get(image_path) response.raise_for_status() content_type = response.headers.get('Content-Type') if 'image' not in content_type: raise ValueError(f"Invalid image URL: {content_type}") image = Image.open(BytesIO(response.content)).convert("RGB") except Exception as e: print(f"Image loading error from {image_path}: {e}") return None, None faces, probs = mtcnn(image, return_prob=True) if faces is None or len(faces) == 0: return None, None embedding = resnet(faces[0].unsqueeze(0)) return embedding, faces[0]
2. 텐서에서 이미지로 변환:
표시할 텐서를 준비합니다.
def tensor_to_image(tensor): """Converts a normalized tensor to a displayable image array.""" image = tensor.permute(1, 2, 0).detach().numpy() image = (image - image.min()) / (image.max() - image.min()) image = (image * 255).astype('uint8') return image
3. 가장 유사한 얼굴 식별:
대상 이미지의 임베딩과 후보 이미지의 임베딩을 비교합니다.
def find_most_similar(target_image_path, candidate_image_paths): """Identifies the most similar image to the target from a list of candidates.""" target_emb, target_face = get_embedding_and_face(target_image_path) if target_emb is None: raise ValueError("No face detected in the target image.") highest_similarity = float('-inf') most_similar_face = None most_similar_image_path = None candidate_faces = [] similarities = [] for candidate_image_path in candidate_image_paths: candidate_emb, candidate_face = get_embedding_and_face(candidate_image_path) if candidate_emb is None: similarities.append(None) candidate_faces.append(None) continue similarity = torch.nn.functional.cosine_similarity(target_emb, candidate_emb).item() similarities.append(similarity) candidate_faces.append(candidate_face) if similarity > highest_similarity: highest_similarity = similarity most_similar_face = candidate_face most_similar_image_path = candidate_image_path # Visualization plt.figure(figsize=(12, 8)) # Display target image plt.subplot(2, len(candidate_image_paths) + 1, 1) plt.imshow(tensor_to_image(target_face)) plt.title("Target Image") plt.axis("off") # Display most similar image if most_similar_face is not None: plt.subplot(2, len(candidate_image_paths) + 1, 2) plt.imshow(tensor_to_image(most_similar_face)) plt.title("Most Similar") plt.axis("off") # Display all candidates with similarity scores for idx, (candidate_face, similarity) in enumerate(zip(candidate_faces, similarities)): plt.subplot(2, len(candidate_image_paths) + 1, idx + len(candidate_image_paths) + 2) if candidate_face is not None: plt.imshow(tensor_to_image(candidate_face)) plt.title(f"Score: {similarity * 100:.2f}%") else: plt.title("No Face Detected") plt.axis("off") plt.tight_layout() plt.show() if most_similar_image_path is None: raise ValueError("No faces detected in candidate images.") return most_similar_image_path, highest_similarity
사용방법
비교용 이미지 URL:
image_url_target = 'https://d1mnxluw9mpf9w.cloudfront.net/media/7588/4x3/1200.jpg' candidate_image_urls = [ 'https://beyondthesinglestory.wordpress.com/wp-content/uploads/2021/04/elon_musk_royal_society_crop1.jpg', 'https://cdn.britannica.com/56/199056-050-CCC44482/Jeff-Bezos-2017.jpg', 'https://cdn.britannica.com/45/188745-050-7B822E21/Richard-Branson-2003.jpg' ] most_similar_image, similarity_score = find_most_similar(image_url_target, candidate_image_urls) print(f"Most similar image: {most_similar_image}") print(f"Similarity score: {similarity_score * 100:.2f}%")
결과
결론
이 예에서는 Facenet-pytorch의 얼굴 인식 기능을 보여줍니다. 얼굴 감지와 임베딩 생성을 결합하면 신원 확인, 콘텐츠 필터링 등 다양한 애플리케이션을 위한 도구를 만들 수 있습니다.
위 내용은 Python과 FaceNet을 사용한 얼굴 인식의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Python에는 두 개의 목록을 연결하는 방법이 많이 있습니다. 1. 연산자 사용 간단하지만 큰 목록에서는 비효율적입니다. 2. 효율적이지만 원래 목록을 수정하는 확장 방법을 사용하십시오. 3. 효율적이고 읽기 쉬운 = 연산자를 사용하십시오. 4. 메모리 효율적이지만 추가 가져 오기가 필요한 itertools.chain function을 사용하십시오. 5. 우아하지만 너무 복잡 할 수있는 목록 구문 분석을 사용하십시오. 선택 방법은 코드 컨텍스트 및 요구 사항을 기반으로해야합니다.

Python 목록을 병합하는 방법에는 여러 가지가 있습니다. 1. 단순하지만 큰 목록에 대한 메모리 효율적이지 않은 연산자 사용; 2. 효율적이지만 원래 목록을 수정하는 확장 방법을 사용하십시오. 3. 큰 데이터 세트에 적합한 itertools.chain을 사용하십시오. 4. 사용 * 운영자, 한 줄의 코드로 중소형 목록을 병합하십시오. 5. Numpy.concatenate를 사용하십시오. 이는 고성능 요구 사항이있는 대규모 데이터 세트 및 시나리오에 적합합니다. 6. 작은 목록에 적합하지만 비효율적 인 Append Method를 사용하십시오. 메소드를 선택할 때는 목록 크기 및 응용 프로그램 시나리오를 고려해야합니다.

CompiledLanguagesOfferSpeedSecurity, while InterpretedLanguagesProvideeaseofusEandportability

Python에서, for 루프는 반복 가능한 물체를 가로 지르는 데 사용되며, 조건이 충족 될 때 반복적으로 작업을 수행하는 데 사용됩니다. 1) 루프 예제 : 목록을 가로 지르고 요소를 인쇄하십시오. 2) 루프 예제 : 올바르게 추측 할 때까지 숫자 게임을 추측하십시오. 마스터 링 사이클 원리 및 최적화 기술은 코드 효율성과 안정성을 향상시킬 수 있습니다.

목록을 문자열로 연결하려면 Python의 join () 메소드를 사용하는 것이 최선의 선택입니다. 1) join () 메소드를 사용하여 목록 요소를 ''.join (my_list)과 같은 문자열로 연결하십시오. 2) 숫자가 포함 된 목록의 경우 연결하기 전에 맵 (str, 숫자)을 문자열로 변환하십시오. 3) ','. join (f '({fruit})'forfruitinfruits와 같은 복잡한 형식에 발전기 표현식을 사용할 수 있습니다. 4) 혼합 데이터 유형을 처리 할 때 MAP (str, mixed_list)를 사용하여 모든 요소를 문자열로 변환 할 수 있도록하십시오. 5) 큰 목록의 경우 ''.join (large_li

PythonuseSahybrideactroach, combingingcompytobytecodeandingretation.1) codeiscompiledToplatform-IndependentBecode.2) bytecodeistredbythepythonvirtonmachine, enterancingefficiency andportability.

"for"and "while"loopsare : 1) "에 대한"loopsareIdealforitertatingOverSorkNowniterations, whide2) "weekepindiTeRations.Un

Python에서는 다양한 방법을 통해 목록을 연결하고 중복 요소를 관리 할 수 있습니다. 1) 연산자를 사용하거나 ()을 사용하여 모든 중복 요소를 유지합니다. 2) 세트로 변환 한 다음 모든 중복 요소를 제거하기 위해 목록으로 돌아가지 만 원래 순서는 손실됩니다. 3) 루프 또는 목록 이해를 사용하여 세트를 결합하여 중복 요소를 제거하고 원래 순서를 유지하십시오.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

Dreamweaver Mac版
시각적 웹 개발 도구

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)