찾다
백엔드 개발파이썬 튜토리얼이 작은 Python 스크립트는 저수준 프로그래밍에 대한 이해를 향상시켰습니다.

This Small Python Script Improved Understanding of Low-Level Programming

원본은 Medium의 Level Up Coding에 게재되었습니다.


Python의 사용 용이성은 종종 근본적인 복잡성을 가립니다. 많은 개발자가 공통 라이브러리와 패턴에 익숙해져 학습 정체 현상이 발생합니다. 그러나 동시성 및 하위 수준 프로그래밍과 같은 고급 주제는 상당한 성장 기회를 제공합니다.

Talk Python To Me 팟캐스트는 고급 Python 학습을 위한 귀중한 리소스입니다. "async/await 및 스레드를 사용한 Python의 병렬 프로그래밍" 과정은 동시성과 코드 최적화에 대한 중요한 통찰력을 제공합니다.

기존 컴퓨터 과학 커리큘럼에서는 컴퓨터 아키텍처, C 프로그래밍, 뮤텍스, 세마포어, 포인터와 같은 개념을 다루는 경우가 많습니다. 그러나 이러한 개념을 실제로 적용하는 것은 많은 프로그래머에게 여전히 어려운 일입니다. 예를 들어, CPU 코어 활용도를 이해하는 것은 이론적으로만 머무르는 경우가 많습니다.

이 과정에서는 동시 및 병렬 프로그래밍을 단순화하는 강력한 도구인 unsync 라이브러리를 중점적으로 다룹니다. unsyncasync, 스레딩 및 다중 처리를 단일 API로 통합하여 CPU 바인딩, I/O 바인딩 또는 비동기식인지에 따라 작업을 자동으로 최적화합니다. 스레드 관리 복잡성을 처리하여 동시 프로그래밍을 간소화합니다.

다음 스크립트는 이러한 개념을 보여줍니다.

# source: https://github.com/talkpython/async-techniques-python-course/blob/master/src/09-built-on-asyncio/the_unsync/thesync.py

import datetime
import math
import asyncio
import aiohttp
import requests
from unsync import unsync

def main():
    start_time = datetime.datetime.now()

    tasks = [
        compute_some(),
        compute_some(),
        compute_some(),
        download_some(),
        download_some(),
        download_some_more(),
        download_some_more(),
        wait_some(),
        wait_some(),
        wait_some(),
        wait_some(),
    ]

    [t.result() for t in tasks]

    end_time = datetime.datetime.now()
    elapsed_time = end_time - start_time
    print(f"Synchronous version completed in {elapsed_time.total_seconds():,.2f} seconds.")

@unsync(cpu_bound=True)
def compute_some():
    print("Performing computation...")
    for _ in range(1, 10_000_000):
        math.sqrt(25 ** 25 + .01)

@unsync()
async def download_some():
    print("Downloading...")
    url = 'https://talkpython.fm/episodes/show/174/coming-into-python-from-another-industry-part-2'
    async with aiohttp.ClientSession(connector=aiohttp.TCPConnector(ssl=False)) as session:
        async with session.get(url) as resp:
            resp.raise_for_status()
            text = await resp.text()
    print(f"Downloaded (more) {len(text):,} characters.")

@unsync()
def download_some_more():
    print("Downloading more...")
    url = 'https://pythonbytes.fm/episodes/show/92/will-your-python-be-compiled'
    resp = requests.get(url)
    resp.raise_for_status()
    text = resp.text
    print(f"Downloaded {len(text):,} characters.")

@unsync()
async def wait_some():
    print("Waiting...")
    for _ in range(1, 1000):
        await asyncio.sleep(.001)

if __name__ == "__main__":
    main()

스크립트 분석

이 스크립트는 성능 향상을 위한 동시 작업 실행을 보여줍니다.

  1. compute_some 기능: 집중적인 계산을 수행하여 멀티스레드 CPU 코어 활용도를 보여줍니다. 실제 응용 프로그램에는 과학 컴퓨팅 및 데이터 처리가 포함됩니다.
  2. download_some 기능: 비차단 I/O에 aiohttp을 활용하여 데이터를 비동기적으로 다운로드합니다. 웹 스크래핑 및 동시 API 호출에 적합합니다.
  3. download_some_more 기능: 별도의 스레드에서 동기 요청을 사용하며, 비차단 I/O 없이 동시성이 필요한 간단한 시나리오에 적합합니다.
  4. wait_some 기능: 비동기 지연을 시뮬레이션하여 다른 작업이 동시에 진행될 수 있도록 합니다. 외부 이벤트를 기다리는 작업에 유용합니다.

주요 학습 포인트

스크립트는 동시 프로그래밍의 이점을 강조합니다. 동시 작업 실행으로 인해 처리 속도가 빨라지고 리소스 활용도가 더 높아집니다.


효율적인 애플리케이션 개발을 위해서는 메모리(RAM)와 처리 능력(CPU) 간의 상호 작용을 이해해야 합니다. RAM은 데이터에 대한 빠른 액세스를 제공하여 CPU가 명령을 실행하는 동안 원활한 멀티태스킹을 가능하게 합니다. 대규모 데이터 세트와 여러 작업을 처리하려면 적절한 메모리가 중요하며, 강력한 CPU는 빠른 계산과 응답성 있는 애플리케이션을 보장합니다. 이 관계를 이해하는 것은 최적화와 효율적인 작업 관리에 필수적이며 복잡한 작업을 처리할 수 있는 고성능 애플리케이션으로 이어집니다.


사진: Alexander Kovalev

위 내용은 이 작은 Python 스크립트는 저수준 프로그래밍에 대한 이해를 향상시켰습니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
파이썬에서 두 목록을 연결하는 대안은 무엇입니까?파이썬에서 두 목록을 연결하는 대안은 무엇입니까?May 09, 2025 am 12:16 AM

Python에는 두 개의 목록을 연결하는 방법이 많이 있습니다. 1. 연산자 사용 간단하지만 큰 목록에서는 비효율적입니다. 2. 효율적이지만 원래 목록을 수정하는 확장 방법을 사용하십시오. 3. 효율적이고 읽기 쉬운 = 연산자를 사용하십시오. 4. 메모리 효율적이지만 추가 가져 오기가 필요한 itertools.chain function을 사용하십시오. 5. 우아하지만 너무 복잡 할 수있는 목록 구문 분석을 사용하십시오. 선택 방법은 코드 컨텍스트 및 요구 사항을 기반으로해야합니다.

파이썬 : 두 목록을 병합하는 효율적인 방법파이썬 : 두 목록을 병합하는 효율적인 방법May 09, 2025 am 12:15 AM

Python 목록을 병합하는 방법에는 여러 가지가 있습니다. 1. 단순하지만 큰 목록에 대한 메모리 효율적이지 않은 연산자 사용; 2. 효율적이지만 원래 목록을 수정하는 확장 방법을 사용하십시오. 3. 큰 데이터 세트에 적합한 itertools.chain을 사용하십시오. 4. 사용 * 운영자, 한 줄의 코드로 중소형 목록을 병합하십시오. 5. Numpy.concatenate를 사용하십시오. 이는 고성능 요구 사항이있는 대규모 데이터 세트 및 시나리오에 적합합니다. 6. 작은 목록에 적합하지만 비효율적 인 Append Method를 사용하십시오. 메소드를 선택할 때는 목록 크기 및 응용 프로그램 시나리오를 고려해야합니다.

편집 된 vs 해석 언어 : 장단점편집 된 vs 해석 언어 : 장단점May 09, 2025 am 12:06 AM

CompiledLanguagesOfferSpeedSecurity, while InterpretedLanguagesProvideeaseofusEandportability

파이썬 : 가장 완전한 가이드 인 루프를 위해파이썬 : 가장 완전한 가이드 인 루프를 위해May 09, 2025 am 12:05 AM

Python에서, for 루프는 반복 가능한 물체를 가로 지르는 데 사용되며, 조건이 충족 될 때 반복적으로 작업을 수행하는 데 사용됩니다. 1) 루프 예제 : 목록을 가로 지르고 요소를 인쇄하십시오. 2) 루프 예제 : 올바르게 추측 할 때까지 숫자 게임을 추측하십시오. 마스터 링 사이클 원리 및 최적화 기술은 코드 효율성과 안정성을 향상시킬 수 있습니다.

Python은 문자열로 나열됩니다Python은 문자열로 나열됩니다May 09, 2025 am 12:02 AM

목록을 문자열로 연결하려면 Python의 join () 메소드를 사용하는 것이 최선의 선택입니다. 1) join () 메소드를 사용하여 목록 요소를 ''.join (my_list)과 같은 문자열로 연결하십시오. 2) 숫자가 포함 된 목록의 경우 연결하기 전에 맵 (str, 숫자)을 문자열로 변환하십시오. 3) ','. join (f '({fruit})'forfruitinfruits와 같은 복잡한 형식에 발전기 표현식을 사용할 수 있습니다. 4) 혼합 데이터 유형을 처리 할 때 MAP (str, mixed_list)를 사용하여 모든 요소를 ​​문자열로 변환 할 수 있도록하십시오. 5) 큰 목록의 경우 ''.join (large_li

Python의 하이브리드 접근법 : 컴파일 및 해석 결합Python의 하이브리드 접근법 : 컴파일 및 해석 결합May 08, 2025 am 12:16 AM

PythonuseSahybrideactroach, combingingcompytobytecodeandingretation.1) codeiscompiledToplatform-IndependentBecode.2) bytecodeistredbythepythonvirtonmachine, enterancingefficiency andportability.

Python 's 'for'와 'whind'루프의 차이점을 배우십시오Python 's 'for'와 'whind'루프의 차이점을 배우십시오May 08, 2025 am 12:11 AM

"for"and "while"loopsare : 1) "에 대한"loopsareIdealforitertatingOverSorkNowniterations, whide2) "weekepindiTeRations.Un

Python Concatenate는 중복과 함께 목록입니다Python Concatenate는 중복과 함께 목록입니다May 08, 2025 am 12:09 AM

Python에서는 다양한 방법을 통해 목록을 연결하고 중복 요소를 관리 할 수 ​​있습니다. 1) 연산자를 사용하거나 ()을 사용하여 모든 중복 요소를 유지합니다. 2) 세트로 변환 한 다음 모든 중복 요소를 제거하기 위해 목록으로 돌아가지 만 원래 순서는 손실됩니다. 3) 루프 또는 목록 이해를 사용하여 세트를 결합하여 중복 요소를 제거하고 원래 순서를 유지하십시오.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

안전한 시험 브라우저

안전한 시험 브라우저

안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

Dreamweaver Mac版

Dreamweaver Mac版

시각적 웹 개발 도구

SecList

SecList

SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

ZendStudio 13.5.1 맥

ZendStudio 13.5.1 맥

강력한 PHP 통합 개발 환경

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)