간단히 말하면: 이 가이드에서는crawl4ai의 AI 기반 추출 및 Pydantic 데이터 모델을 사용하여 전자상거래 스크래퍼를 구축하는 방법을 보여줍니다. 스크레이퍼는 제품 목록(이름, 가격)과 자세한 제품 정보(사양, 리뷰)를 모두 비동기식으로 검색합니다.
Google Colab에서 전체 코드에 액세스
전자상거래 데이터 분석을 위한 기존 웹 스크래핑의 복잡성에 지치셨나요? 이 튜토리얼에서는 최신 Python 도구를 사용하여 프로세스를 단순화합니다. 지능형 데이터 추출에는 crawl4ai를, 강력한 데이터 모델링 및 검증에는 Pydantic을 활용합니다.
Crawl4AI와 Pydantic을 선택하는 이유는 무엇인가요?
- crawl4ai: AI 기반 추출 방법을 사용하여 웹 크롤링 및 스크래핑을 간소화합니다.
- Pydantic: 데이터 검증 및 스키마 관리를 제공하여 구조화되고 정확한 스크랩 데이터를 보장합니다.
토코피디아를 타겟으로 하는 이유는 무엇인가요?
인도네시아의 주요 전자상거래 플랫폼인 Tokopedia가 그 예입니다. (참고: 저자는 인도네시아인이며 플랫폼 사용자이지만 제휴 관계는 아닙니다.) 이 원칙은 다른 전자 상거래 사이트에도 적용됩니다. 이러한 스크래핑 접근 방식은 전자 상거래 분석, 시장 조사 또는 자동화된 데이터 수집에 관심이 있는 개발자에게 유용합니다.
이 접근 방식의 차별점은 무엇입니까?
복잡한 CSS 선택기나 XPath에 의존하는 대신 우리는 creep4ai의 LLM 기반 추출을 활용합니다. 다음을 제공합니다:
- 웹사이트 구조 변경에 대한 탄력성이 향상되었습니다.
- 더 깔끔하고 구조화된 데이터 출력.
- 유지관리 비용이 감소합니다.
개발 환경 설정
필요한 패키지 설치부터 시작하세요.
%pip install -U crawl4ai %pip install nest_asyncio %pip install pydantic
노트북에서 비동기 코드 실행을 위해 nest_asyncio
:
import crawl4ai import asyncio import nest_asyncio nest_asyncio.apply()
Pydantic으로 데이터 모델 정의
Pydantic을 사용하여 예상되는 데이터 구조를 정의합니다. 모델은 다음과 같습니다.
from pydantic import BaseModel, Field from typing import List, Optional class TokopediaListingItem(BaseModel): product_name: str = Field(..., description="Product name from listing.") product_url: str = Field(..., description="URL to product detail page.") price: str = Field(None, description="Price displayed in listing.") store_name: str = Field(None, description="Store name from listing.") rating: str = Field(None, description="Rating (1-5 scale) from listing.") image_url: str = Field(None, description="Primary image URL from listing.") class TokopediaProductDetail(BaseModel): product_name: str = Field(..., description="Product name from detail page.") all_images: List[str] = Field(default_factory=list, description="List of all product image URLs.") specs: str = Field(None, description="Technical specifications or short info.") description: str = Field(None, description="Long product description.") variants: List[str] = Field(default_factory=list, description="List of variants or color options.") satisfaction_percentage: Optional[str] = Field(None, description="Customer satisfaction percentage.") total_ratings: Optional[str] = Field(None, description="Total number of ratings.") total_reviews: Optional[str] = Field(None, description="Total number of reviews.") stock: Optional[str] = Field(None, description="Stock availability.")
이러한 모델은 템플릿 역할을 하여 데이터 검증을 보장하고 명확한 문서를 제공합니다.
스크래핑 과정
스크레이퍼는 두 단계로 작동합니다.
1. 제품 목록 크롤링
먼저 검색 결과 페이지를 검색합니다.
async def crawl_tokopedia_listings(query: str = "mouse-wireless", max_pages: int = 1): # ... (Code remains the same) ...
2. 제품 세부정보 가져오는 중
다음으로 각 제품 URL에 대해 자세한 정보를 가져옵니다.
async def crawl_tokopedia_detail(product_url: str): # ... (Code remains the same) ...
스테이지 결합
마지막으로 두 단계를 통합합니다.
async def run_full_scrape(query="mouse-wireless", max_pages=2, limit=15): # ... (Code remains the same) ...
스크레이퍼 실행
스크래퍼 실행 방법은 다음과 같습니다.
%pip install -U crawl4ai %pip install nest_asyncio %pip install pydantic
전문가의 팁
- 속도 제한: Tokopedia 서버를 존중합니다. 대규모 스크래핑 요청 사이에 지연이 발생합니다.
-
캐싱: 개발 중에 크롤링4ai의 캐싱을 활성화합니다(
cache_mode=CacheMode.ENABLED
). - 오류 처리: 프로덕션 용도로 포괄적인 오류 처리 및 재시도 메커니즘을 구현합니다.
- API 키: Gemini API 키를 코드에 직접 저장하지 않고 환경 변수에 안전하게 저장합니다.
다음 단계
이 스크레이퍼는 다음으로 확장될 수 있습니다.
- 데이터베이스에 데이터를 저장합니다.
- 시간 경과에 따른 가격 변화를 모니터링하세요.
- 제품 동향과 패턴을 분석합니다.
- 여러 매장의 가격을 비교해 보세요.
결론
crawl4ai의 LLM 기반 추출은 기존 방법에 비해 웹 스크래핑 유지 관리성을 크게 향상시킵니다. Pydantic과의 통합으로 데이터 정확성과 구조가 보장됩니다.
스크래핑하기 전에 항상 웹사이트의 robots.txt
및 서비스 약관을 준수하세요.
중요 링크:
Crawl4AI
- 공식 웹사이트: https://www.php.cn/link/1026d8c97a822ee171c6cbf939fe4aca
- GitHub 저장소: https://www.php.cn/link/62c1b075041300455ec2b54495d93c99
- 문서: https://www.php.cn/link/1026d8c97a822ee171c6cbf939fe4aca/mkdocs/core/installation/
피단틱
- 공식 문서: https://www.php.cn/link/a4d4ec4aa3c45731396ed6e65fee40b9
- PyPI 페이지: https://www.php.cn/link/4d8ab89733dd9a88f1a9d130ca675c2e
- GitHub 저장소: https://www.php.cn/link/22935fba49f7d80d5adf1cfa6b0344f4
참고: 전체 코드는 Colab 노트북에서 확인할 수 있습니다. 자유롭게 실험하고 특정 요구 사항에 맞게 조정해 보세요.
위 내용은 Pydantic, Crawl 및 Gemini를 사용하여 비동기 전자상거래 웹 스크레이퍼 구축의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Python에는 두 개의 목록을 연결하는 방법이 많이 있습니다. 1. 연산자 사용 간단하지만 큰 목록에서는 비효율적입니다. 2. 효율적이지만 원래 목록을 수정하는 확장 방법을 사용하십시오. 3. 효율적이고 읽기 쉬운 = 연산자를 사용하십시오. 4. 메모리 효율적이지만 추가 가져 오기가 필요한 itertools.chain function을 사용하십시오. 5. 우아하지만 너무 복잡 할 수있는 목록 구문 분석을 사용하십시오. 선택 방법은 코드 컨텍스트 및 요구 사항을 기반으로해야합니다.

Python 목록을 병합하는 방법에는 여러 가지가 있습니다. 1. 단순하지만 큰 목록에 대한 메모리 효율적이지 않은 연산자 사용; 2. 효율적이지만 원래 목록을 수정하는 확장 방법을 사용하십시오. 3. 큰 데이터 세트에 적합한 itertools.chain을 사용하십시오. 4. 사용 * 운영자, 한 줄의 코드로 중소형 목록을 병합하십시오. 5. Numpy.concatenate를 사용하십시오. 이는 고성능 요구 사항이있는 대규모 데이터 세트 및 시나리오에 적합합니다. 6. 작은 목록에 적합하지만 비효율적 인 Append Method를 사용하십시오. 메소드를 선택할 때는 목록 크기 및 응용 프로그램 시나리오를 고려해야합니다.

CompiledLanguagesOfferSpeedSecurity, while InterpretedLanguagesProvideeaseofusEandportability

Python에서, for 루프는 반복 가능한 물체를 가로 지르는 데 사용되며, 조건이 충족 될 때 반복적으로 작업을 수행하는 데 사용됩니다. 1) 루프 예제 : 목록을 가로 지르고 요소를 인쇄하십시오. 2) 루프 예제 : 올바르게 추측 할 때까지 숫자 게임을 추측하십시오. 마스터 링 사이클 원리 및 최적화 기술은 코드 효율성과 안정성을 향상시킬 수 있습니다.

목록을 문자열로 연결하려면 Python의 join () 메소드를 사용하는 것이 최선의 선택입니다. 1) join () 메소드를 사용하여 목록 요소를 ''.join (my_list)과 같은 문자열로 연결하십시오. 2) 숫자가 포함 된 목록의 경우 연결하기 전에 맵 (str, 숫자)을 문자열로 변환하십시오. 3) ','. join (f '({fruit})'forfruitinfruits와 같은 복잡한 형식에 발전기 표현식을 사용할 수 있습니다. 4) 혼합 데이터 유형을 처리 할 때 MAP (str, mixed_list)를 사용하여 모든 요소를 문자열로 변환 할 수 있도록하십시오. 5) 큰 목록의 경우 ''.join (large_li

PythonuseSahybrideactroach, combingingcompytobytecodeandingretation.1) codeiscompiledToplatform-IndependentBecode.2) bytecodeistredbythepythonvirtonmachine, enterancingefficiency andportability.

"for"and "while"loopsare : 1) "에 대한"loopsareIdealforitertatingOverSorkNowniterations, whide2) "weekepindiTeRations.Un

Python에서는 다양한 방법을 통해 목록을 연결하고 중복 요소를 관리 할 수 있습니다. 1) 연산자를 사용하거나 ()을 사용하여 모든 중복 요소를 유지합니다. 2) 세트로 변환 한 다음 모든 중복 요소를 제거하기 위해 목록으로 돌아가지 만 원래 순서는 손실됩니다. 3) 루프 또는 목록 이해를 사용하여 세트를 결합하여 중복 요소를 제거하고 원래 순서를 유지하십시오.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

mPDF
mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

WebStorm Mac 버전
유용한 JavaScript 개발 도구