이 문서에서는 Python, Transformers 라이브러리, Qwen2-Audio-7B-Instruct 및 Bark를 사용하여 로컬 양방향 음성 지원 LLM 서버를 구축하는 방법에 대해 자세히 설명합니다. 이 설정을 사용하면 개인화된 음성 상호작용이 가능합니다.
전제 조건:
시작하기 전에 Python 3.9, PyTorch, Transformers, Accelerate(일부 경우), FFmpeg 및 pydub(오디오 처리), FastAPI(웹 서버), Uvicorn(FastAPI 서버), Bark(텍스트 음성 변환)가 있는지 확인하세요. ), Multipart 및 SciPy가 설치되었습니다. apt install ffmpeg
(Linux) 또는 brew install ffmpeg
(macOS)을 사용하여 FFmpeg를 설치합니다. Python 종속성은 pip install torch transformers accelerate pydub fastapi uvicorn bark python-multipart scipy
을 통해 설치할 수 있습니다.
단계:
-
환경 설정: Python 환경을 초기화하고 PyTorch 장치를 선택합니다(GPU용 CUDA, 그렇지 않은 경우 CPU 또는 Apple Silicon용 MPS(MPS 지원은 제한될 수 있음)).
import torch device = 'cuda' if torch.cuda.is_available() else 'cpu'
-
모델 로딩: Qwen2-Audio-7B-Instruct 모델과 프로세서를 로딩합니다. 클라우드 GPU 인스턴스(Runpod, Vast)의 경우 모델을 다운로드하기 전에
HF_HOME
및XDG_CACHE_HOME
환경 변수를 볼륨 스토리지로 설정하세요. 프로덕션 환경에서는 vLLM과 같은 더 빠른 추론 엔진을 사용하는 것을 고려해 보세요.from transformers import AutoProcessor, Qwen2AudioForConditionalGeneration model_name = "Qwen/Qwen2-Audio-7B-Instruct" processor = AutoProcessor.from_pretrained(model_name) model = Qwen2AudioForConditionalGeneration.from_pretrained(model_name, device_map="auto").to(device)
-
Bark 모델 로드: Bark 텍스트 음성 변환 모델을 로드합니다. 대안이 있지만 독점 옵션이 더 비쌀 수 있습니다.
from bark import SAMPLE_RATE, generate_audio, preload_models preload_models()
결합된 VRAM 사용량은 약 24GB입니다. 필요한 경우 양자화된 Qwen 모델을 사용하세요.
-
FastAPI 서버 설정: 오디오 및 텍스트 입력을 위한
/voice
및/text
엔드포인트를 각각 사용하여 FastAPI 서버를 생성합니다.from fastapi import FastAPI, UploadFile, Form from fastapi.responses import StreamingResponse import uvicorn app = FastAPI() # ... (API endpoints defined later) ... if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000)
-
오디오 입력 처리: FFmpeg 및 pydub를 사용하여 수신 오디오를 Qwen 모델에 적합한 형식으로 처리합니다.
audiosegment_to_float32_array
및load_audio_as_array
함수가 이 변환을 처리합니다. -
Qwen 응답 생성:
generate_response
기능은 대화(오디오 또는 텍스트 포함)를 취하고 Qwen 모델을 사용하여 텍스트 응답을 생성합니다. 프로세서의 채팅 템플릿을 통해 오디오 및 텍스트 입력을 모두 처리합니다. -
텍스트 음성 변환:
text_to_speech
기능은 Bark를 사용하여 생성된 텍스트를 WAV 오디오 파일로 변환합니다. -
API 엔드포인트 통합:
/voice
및/text
엔드포인트는 입력을 처리하고,generate_response
을 사용하여 응답을 생성하고, StreamingResponse로text_to_speech
을 사용하여 합성된 음성을 반환하도록 완료되었습니다. -
테스트:
curl
를 사용하여 서버를 테스트합니다.import torch device = 'cuda' if torch.cuda.is_available() else 'cpu'
전체 코드: (전체 코드는 너무 길어 여기에 포함할 수 없지만 원래 프롬프트에서 사용할 수 있습니다. 위의 코드 스니펫은 핵심 부분을 보여줍니다.)
애플리케이션: 이 설정은 챗봇, 전화 상담원, 고객 지원 자동화 및 법률 보조원을 위한 기반으로 사용할 수 있습니다.
이번 개정된 답변은 더욱 구조화되고 간결한 설명을 제공하여 더 쉽게 이해하고 구현할 수 있게 되었습니다. 코드 조각은 원래 정보의 무결성을 유지하면서 중요한 측면에 더 중점을 둡니다.
위 내용은 Python, Transformers, Qwen 및 Bark를 사용하여 양방향 음성을 지원하는 홈메이드 LLM 호스팅의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Python 또는 C를 선택하는 것은 프로젝트 요구 사항에 따라 다릅니다. 1) 빠른 개발, 데이터 처리 및 프로토 타입 설계가 필요한 경우 Python을 선택하십시오. 2) 고성능, 낮은 대기 시간 및 근접 하드웨어 제어가 필요한 경우 C를 선택하십시오.

매일 2 시간의 파이썬 학습을 투자하면 프로그래밍 기술을 효과적으로 향상시킬 수 있습니다. 1. 새로운 지식 배우기 : 문서를 읽거나 자습서를 시청하십시오. 2. 연습 : 코드를 작성하고 완전한 연습을합니다. 3. 검토 : 배운 내용을 통합하십시오. 4. 프로젝트 실무 : 실제 프로젝트에서 배운 것을 적용하십시오. 이러한 구조화 된 학습 계획은 파이썬을 체계적으로 마스터하고 경력 목표를 달성하는 데 도움이 될 수 있습니다.

2 시간 이내에 Python을 효율적으로 학습하는 방법 : 1. 기본 지식을 검토하고 Python 설치 및 기본 구문에 익숙한 지 확인하십시오. 2. 변수, 목록, 기능 등과 같은 파이썬의 핵심 개념을 이해합니다. 3. 예제를 사용하여 마스터 기본 및 고급 사용; 4. 일반적인 오류 및 디버깅 기술을 배우십시오. 5. 목록 이해력 사용 및 PEP8 스타일 안내서와 같은 성능 최적화 및 모범 사례를 적용합니다.

Python은 초보자 및 데이터 과학에 적합하며 C는 시스템 프로그래밍 및 게임 개발에 적합합니다. 1. 파이썬은 간단하고 사용하기 쉽고 데이터 과학 및 웹 개발에 적합합니다. 2.C는 게임 개발 및 시스템 프로그래밍에 적합한 고성능 및 제어를 제공합니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

Python은 데이터 과학 및 빠른 개발에 더 적합한 반면 C는 고성능 및 시스템 프로그래밍에 더 적합합니다. 1. Python Syntax는 간결하고 학습하기 쉽고 데이터 처리 및 과학 컴퓨팅에 적합합니다. 2.C는 복잡한 구문을 가지고 있지만 성능이 뛰어나고 게임 개발 및 시스템 프로그래밍에 종종 사용됩니다.

파이썬을 배우기 위해 하루에 2 시간을 투자하는 것이 가능합니다. 1. 새로운 지식 배우기 : 목록 및 사전과 같은 1 시간 안에 새로운 개념을 배우십시오. 2. 연습 및 연습 : 1 시간을 사용하여 소규모 프로그램 작성과 같은 프로그래밍 연습을 수행하십시오. 합리적인 계획과 인내를 통해 짧은 시간에 Python의 핵심 개념을 마스터 할 수 있습니다.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전
