fit()
과 fit_transform()
의 차이점이 궁금하신가요? 이 두 기능은 데이터 전처리 중에 자주 나타납니다. 차이점을 자세히 살펴보고 예를 들어 설명해 보겠습니다.
데이터 표준화는 일반적으로 평균, 최소값, 최대값, 분산 등 데이터의 다양한 매개변수를 계산해야 하는 중요한 전처리 단계입니다. fit_transform()
은 이러한 매개변수를 계산하여 데이터 세트에 적용하는 반면, fit()
은 이러한 매개변수만 계산하고 데이터 세트에 적용하지 않습니다.
작은 데이터 배열이 있다고 가정해 보겠습니다.
data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
각각 fit()
및 transform()
사용:
from sklearn.preprocessing import StandardScaler # 步骤 1 scaler = StandardScaler() # 步骤 2 scaler.fit(data) # 此处仅计算均值和标准差,不进行数据缩放 # 步骤 3 scaled_data = scaler.transform(data) # 现在 scaled_data 包含标准化后的数据
사용 fit_transform()
:
from sklearn.preprocessing import StandardScaler # 步骤 1 scaler = StandardScaler() # 步骤 2 scaled_data = scaler.fit_transform(data) # scaled_data 包含标准化后的数据
fit_transform()
을 사용하면 추가 단계가 제거되는 것을 볼 수 있습니다.
어떤 기능을 선택할지는 특정 애플리케이션 시나리오에 따라 다릅니다. 먼저 매개변수를 계산한 다음 여러 데이터 세트(예: 훈련 및 테스트 세트)에 변환을 적용해야 하는 경우 각각 fit()
및 transform()
을 사용하는 것이 더 적합합니다. 하지만 단일 데이터 세트에만 변환을 적용해야 하는 경우 fit_transform()
를 사용하면 전처리 프로세스를 더 깔끔하게 만들 수 있습니다.
위 내용은 맞춤 대 Fit_transform의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

slicepaythonlistisdoneusingthesyntaxlist [start : step : step] .here'showitworks : 1) startistheindexofthefirstelementtoinclude.2) stopistheindexofthefirstelemement.3) stepisincrementbetwetweentractionsoftortionsoflists

NumpyAllowsForVariousOperationsOnArrays : 1) BasicArithmeticLikeadDition, Subtraction, A 및 Division; 2) AdvancedOperationsSuchasmatrixmultiplication; 3) extrayintondsfordatamanipulation; 5) Ag

Arraysinpython, 특히 Stroughnumpyandpandas, areestentialfordataanalysis, setingspeedandefficiency

ListSandnumpyArraysInpythonHavedifferentmoryfootPrints : ListSaremoreFlexibleButlessMemory-Efficer, whilumpyArraySareOptimizedFornumericalData.1) ListSTorERENFERENCESTOOBJECTS, OverHeadAround64ByTeson64-BitSyStems.2) NumpyArraysTATACONTACOTIGUOU

ToensurePythonScriptTscriptsBecorrectelyRossDevelopment, Staging and Production, UsethesEStrategies : 1) EnvironmberVariblesForsimplesettings, 2) ConfigurationFilesforcomplexSetups 및 3) DynamicLoadingForAdAptability

Python List 슬라이싱의 기본 구문은 목록 [start : stop : step]입니다. 1. Start는 첫 번째 요소 인덱스, 2.Stop은 첫 번째 요소 인덱스가 제외되고 3. Step은 요소 사이의 단계 크기를 결정합니다. 슬라이스는 데이터를 추출하는 데 사용될뿐만 아니라 목록을 수정하고 반전시키는 데 사용됩니다.

ListSoutPerformArraysin : 1) DynamicsizingandFrequentInsertions/Deletions, 2) StoringHeterogeneousData 및 3) MemoryEfficiencyForsParsEdata, butMayHavesLightPerformanceCosceperationOperations.

TOCONVERTAPYTHONARRAYTOALIST, USETHELIST () CONSTUCTORORAGENERATERATOREXPRESSION.1) importTheArrayModuleAndCreateAnarray.2) USELIST (ARR) 또는 [XFORXINARR] TOCONVERTITTOALIST.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경
