오늘날 빠르게 변화하는 세상에서 기사를 빠르게 훑어보거나 연구 논문의 핵심 사항을 강조하려면 긴 형식의 콘텐츠를 간결한 요약으로 압축하는 것이 필수적입니다. Hugging Face는 텍스트 요약을 위한 강력한 도구인 BART 모델을 제공합니다. 이 기사에서는 Hugging Face의 사전 훈련된 모델, 특히 facebook/bart-large-cnn 모델을 활용하여 긴 기사와 텍스트를 요약하는 방법을 살펴보겠습니다.
Hugging Face의 BART 모델 시작하기
Hugging Face는 텍스트 분류, 번역, 요약과 같은 NLP 작업을 위한 다양한 모델을 제공합니다. 가장 인기 있는 요약 모델 중 하나는 BART(양방향 및 자동 회귀 변환기)로, 이는 대규모 문서에서 일관된 요약을 생성하도록 훈련되었습니다.
1단계: Hugging Face Transformers 라이브러리 설치
Hugging Face 모델을 시작하려면 변환기 라이브러리를 설치해야 합니다. pip를 사용하여 이 작업을 수행할 수 있습니다.
pip install transformers
2단계: 요약 파이프라인 가져오기
라이브러리가 설치되면 요약을 위해 사전 훈련된 모델을 쉽게 로드할 수 있습니다. Hugging Face의 파이프라인 API는 요약 작업을 위해 미세 조정된 facebook/bart-large-cnn과 같은 모델을 사용하기 위한 고급 인터페이스를 제공합니다.
from transformers import pipeline # Load the summarization model summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
3단계: 요약 작성기 실행
이제 요약 도구가 준비되었으므로 긴 텍스트를 입력하여 요약을 생성할 수 있습니다. 아래는 영국의 유명 여배우 매기 스미스(Dame Maggie Smith)에 대한 기사 샘플을 사용한 예시입니다.
ARTICLE = """ Dame Margaret Natalie Smith (28 December 1934 – 27 September 2024) was a British actress. Known for her wit in both comedic and dramatic roles, she had an extensive career on stage and screen for over seven decades and was one of Britain's most recognisable and prolific actresses. She received numerous accolades, including two Academy Awards, five BAFTA Awards, four Emmy Awards, three Golden Globe Awards and a Tony Award, as well as nominations for six Olivier Awards. Smith is one of the few performers to earn the Triple Crown of Acting. Smith began her stage career as a student, performing at the Oxford Playhouse in 1952, and made her professional debut on Broadway in New Faces of '56. Over the following decades Smith established herself alongside Judi Dench as one of the most significant British theatre performers, working for the National Theatre and the Royal Shakespeare Company. On Broadway, she received the Tony Award for Best Actress in a Play for Lettice and Lovage (1990). She was Tony-nominated for Noël Coward's Private Lives (1975) and Tom Stoppard's Night and Day (1979). Smith won Academy Awards for Best Actress for The Prime of Miss Jean Brodie (1969) and Best Supporting Actress for California Suite (1978). She was Oscar-nominated for Othello (1965), Travels with My Aunt (1972), A Room with a View (1985) and Gosford Park (2001). She portrayed Professor Minerva McGonagall in the Harry Potter film series (2001–2011). She also acted in Death on the Nile (1978), Hook (1991), Sister Act (1992), The Secret Garden (1993), The Best Exotic Marigold Hotel (2012), Quartet (2012) and The Lady in the Van (2015). Smith received newfound attention and international fame for her role as Violet Crawley in the British period drama Downton Abbey (2010–2015). The role earned her three Primetime Emmy Awards; she had previously won one for the HBO film My House in Umbria (2003). Over the course of her career she was the recipient of numerous honorary awards, including the British Film Institute Fellowship in 1993, the BAFTA Fellowship in 1996 and the Society of London Theatre Special Award in 2010. Smith was made a dame by Queen Elizabeth II in 1990. """ # Generate the summary summary = summarizer(ARTICLE, max_length=130, min_length=30, do_sample=False) # Print the summary print(summary)
산출:
[{'summary_text': 'Dame Margaret Natalie Smith (28 December 1934 – 27 September 2024) was a British actress. Known for her wit in both comedic and dramatic roles, she had an extensive career on stage and screen for over seven decades. She received numerous accolades, including two Academy Awards, five BAFTA Awards, four Emmy Awards, three Golden Globe Awards and a Tony Award.'}]
출력에서 볼 수 있듯이 요약자는 기사의 주요 요점을 짧고 읽기 쉬운 형식으로 압축하여 그녀의 경력 수명 및 칭찬과 같은 주요 사실을 강조합니다.
또 다른 접근 방식: 파일의 텍스트 요약
일부 사용 사례에서는 하드코딩된 문자열이 아닌 파일에서 텍스트를 읽고 싶을 수도 있습니다. 다음은 텍스트 파일에서 기사를 읽고 요약을 생성하는 업데이트된 Python 스크립트입니다.
from transformers import pipeline # Load the summarizer pipeline summarizer = pipeline("summarization", model="facebook/bart-large-cnn") # Function to read the article from a text file def read_article_from_file(file_path): with open(file_path, 'r') as file: return file.read() # Path to the text file containing the article file_path = 'article.txt' # Change this to your file path # Read the article from the file ARTICLE = read_article_from_file(file_path) # Get the summary summary = summarizer(ARTICLE, max_length=130, min_length=30, do_sample=False) # Print the summary print(summary)
파일 입력:
이 경우 기사를 텍스트 파일(예:article.txt)로 저장해야 하며 스크립트가 내용을 읽고 요약합니다.
결론
Hugging Face의 BART 모델은 자동 텍스트 요약을 위한 훌륭한 도구입니다. 긴 기사, 연구 논문 또는 큰 텍스트 본문을 처리하는 경우 모델을 사용하면 정보를 간결한 요약으로 추출하는 데 도움이 될 수 있습니다.
이 기사에서는 하드코딩된 텍스트 및 파일 입력을 통해 Hugging Face의 사전 훈련된 요약 모델을 프로젝트에 통합하는 방법을 보여주었습니다. 단 몇 줄의 코드만으로 Python 프로젝트에서 효율적인 요약 파이프라인을 시작하고 실행할 수 있습니다.
위 내용은 포옹 얼굴s BART 모델을 사용하여 텍스트 요약의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

이 튜토리얼은 Python을 사용하여 Zipf의 법칙의 통계 개념을 처리하는 방법을 보여주고 법을 처리 할 때 Python의 읽기 및 대형 텍스트 파일을 정렬하는 효율성을 보여줍니다. ZIPF 분포라는 용어가 무엇을 의미하는지 궁금 할 것입니다. 이 용어를 이해하려면 먼저 Zipf의 법칙을 정의해야합니다. 걱정하지 마세요. 지침을 단순화하려고 노력할 것입니다. Zipf의 법칙 Zipf의 법칙은 단순히 : 큰 자연어 코퍼스에서 가장 자주 발생하는 단어는 두 번째 빈번한 단어, 세 번째 빈번한 단어보다 세 번, 네 번째 빈번한 단어 등 4 배나 자주 발생합니다. 예를 살펴 보겠습니다. 미국 영어로 브라운 코퍼스를 보면 가장 빈번한 단어는 "TH입니다.

시끄러운 이미지를 다루는 것은 특히 휴대폰 또는 저해상도 카메라 사진에서 일반적인 문제입니다. 이 튜토리얼은 OpenCV를 사용 하여이 문제를 해결하기 위해 Python의 이미지 필터링 기술을 탐구합니다. 이미지 필터링 : 강력한 도구 이미지 필터

이 기사에서는 HTML을 구문 분석하기 위해 파이썬 라이브러리 인 아름다운 수프를 사용하는 방법을 설명합니다. 데이터 추출, 다양한 HTML 구조 및 오류 처리 및 대안 (SEL과 같은 Find (), find_all (), select () 및 get_text ()와 같은 일반적인 방법을 자세히 설명합니다.

데이터 과학 및 처리가 가장 좋아하는 Python은 고성능 컴퓨팅을위한 풍부한 생태계를 제공합니다. 그러나 Python의 병렬 프로그래밍은 독특한 과제를 제시합니다. 이 튜토리얼은 이러한 과제를 탐구하며 전 세계 해석에 중점을 둡니다.

이 기사는 딥 러닝을 위해 텐서 플로와 Pytorch를 비교합니다. 데이터 준비, 모델 구축, 교육, 평가 및 배포와 관련된 단계에 대해 자세히 설명합니다. 프레임 워크, 특히 계산 포도와 관련하여 주요 차이점

이 튜토리얼은 Python 3에서 사용자 정의 파이프 라인 데이터 구조를 작성하여 클래스 및 작업자 과부하를 활용하여 향상된 기능을 보여줍니다. 파이프 라인의 유연성은 일련의 기능을 데이터 세트, GE에 적용하는 능력에 있습니다.

파이썬 객체의 직렬화 및 사막화는 사소한 프로그램의 주요 측면입니다. 무언가를 Python 파일에 저장하면 구성 파일을 읽거나 HTTP 요청에 응답하는 경우 객체 직렬화 및 사태화를 수행합니다. 어떤 의미에서, 직렬화와 사제화는 세계에서 가장 지루한 것들입니다. 이 모든 형식과 프로토콜에 대해 누가 걱정합니까? 일부 파이썬 객체를 지속하거나 스트리밍하여 나중에 완전히 검색하려고합니다. 이것은 세상을 개념적 차원에서 볼 수있는 좋은 방법입니다. 그러나 실제 수준에서 선택한 직렬화 체계, 형식 또는 프로토콜은 속도, 보안, 유지 보수 상태 및 프로그램의 기타 측면을 결정할 수 있습니다.

Python의 통계 모듈은 강력한 데이터 통계 분석 기능을 제공하여 생물 통계 및 비즈니스 분석과 같은 데이터의 전반적인 특성을 빠르게 이해할 수 있도록 도와줍니다. 데이터 포인트를 하나씩 보는 대신 평균 또는 분산과 같은 통계를보고 무시할 수있는 원래 데이터에서 트렌드와 기능을 발견하고 대형 데이터 세트를보다 쉽고 효과적으로 비교하십시오. 이 튜토리얼은 평균을 계산하고 데이터 세트의 분산 정도를 측정하는 방법을 설명합니다. 달리 명시되지 않는 한,이 모듈의 모든 함수는 단순히 평균을 합산하는 대신 평균 () 함수의 계산을 지원합니다. 부동 소수점 번호도 사용할 수 있습니다. 무작위로 가져옵니다 수입 통계 Fracti에서


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

mPDF
mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.
