찾다
백엔드 개발파이썬 튜토리얼`cv::inRange`를 사용하여 OpenCV에서 색상 감지를 위한 최적의 HSV 경계를 효과적으로 선택하는 방법은 무엇입니까?

How to Effectively Choose Optimal HSV Boundaries for Color Detection in OpenCV using `cv::inRange`?

OpenCV의 cv::inRange를 사용하여 색상 감지를 위한 최적의 HSV 경계 선택

이미지 처리 작업에서는 객체 기반 감지가 필요한 경우가 많습니다. 그들의 색깔에. 이를 위해 cv::inRange 함수는 OpenCV에서 일반적으로 사용되어 지정된 HSV 색상 범위 내의 픽셀을 식별합니다. 그러나 적절한 HSV 경계를 선택하는 것은 어려울 수 있으며, 특히 다양한 애플리케이션이 다양한 HSV 스케일과 색상 형식을 사용하는 경우 더욱 그렇습니다.

문제:

주황색을 감지하는 시나리오를 고려해보세요. 커피 캔 뚜껑 이미지. 김프 도구를 사용하여 뚜껑 중앙의 HSV 값이 (22, 59, 100)인 것으로 나타났습니다. 그러나 HSV 범위(18, 40, 90) - (27, 255, 255)를 적용하면 감지 결과가 만족스럽지 못했습니다.

해결책 1: HSV 스케일 조정

이 문제를 해결하려면 다양한 애플리케이션이 서로 다른 HSV 스케일을 사용한다는 점을 인식하는 것이 중요합니다. 이 경우 gimp는 H: 0-360, S: 0-100, V: 0-100 스케일을 사용하고 OpenCV는 H: 0-179, S: 0-255, V: 0-255를 사용합니다. gimp에서 얻은 색상 값(22)의 경우 절반(11)을 가져와 그에 따라 범위를 조정해야 합니다. 이는 (5, 50, 50) - (15, 255, 255)의 새로운 HSV 범위로 변환됩니다.

해결책 2: BGR 형식으로 변환

추가로 , OpenCV는 RGB가 아닌 BGR 색상 형식을 사용한다는 점을 고려하는 것이 중요합니다. 따라서 Python 코드에서 cv::CV_RGB2HSV 변환은 cv::CV_BGR2HSV로 대체되어야 합니다.

이러한 수정을 구현하면 감지 알고리즘이 향상된 결과를 얻을 수 있습니다. 사소한 잘못된 감지가 여전히 발생할 수 있지만 가장 큰 윤곽선은 뚜껑에 해당해야 합니다.

OpenCV 2로 향상된 Python 코드:

import cv2

in_image = 'kaffee.png'
out_image = 'kaffee_out.png'
out_image_thr = 'kaffee_thr.png'

ORANGE_MIN = np.array([5, 50, 50], np.uint8)
ORANGE_MAX = np.array([15, 255, 255], np.uint8)

def test1():
    frame = cv2.imread(in_image)
    frameHSV = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
    frame_threshed = cv2.inRange(frameHSV, ORANGE_MIN, ORANGE_MAX)
    cv2.imwrite(out_image_thr, frame_threshed)

if __name__ == '__main__':
    test1()

향상된 Python OpenCV를 사용한 코드 4:

import cv2
import numpy as np

in_image = 'kaffee.png'
out_image = 'kaffee_out.png'
out_image_thr = 'kaffee_thr.png'

ORANGE_MIN = np.array([5, 50, 50], np.uint8)
ORANGE_MAX = np.array([15, 255, 255], np.uint8)

def test1():
    frame = cv2.imread(in_image)
    frameHSV = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
    frame_threshed = cv2.inRange(frameHSV, ORANGE_MIN, ORANGE_MAX)
    cv2.imwrite(out_image_thr, frame_threshed)

if __name__ == '__main__':
    test1()

이러한 업데이트된 코드를 사용하면 커피 캔 이미지의 주황색 뚜껑을 정확하게 감지할 수 있습니다.

위 내용은 `cv::inRange`를 사용하여 OpenCV에서 색상 감지를 위한 최적의 HSV 경계를 효과적으로 선택하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
파이썬 : 컴파일러 또는 통역사?파이썬 : 컴파일러 또는 통역사?May 13, 2025 am 12:10 AM

Python은 해석 된 언어이지만 편집 프로세스도 포함됩니다. 1) 파이썬 코드는 먼저 바이트 코드로 컴파일됩니다. 2) 바이트 코드는 Python Virtual Machine에 의해 해석되고 실행됩니다. 3)이 하이브리드 메커니즘은 파이썬이 유연하고 효율적이지만 완전히 편집 된 언어만큼 빠르지는 않습니다.

루프 대 루프를위한 파이썬 : 루프시기는 언제 사용해야합니까?루프 대 루프를위한 파이썬 : 루프시기는 언제 사용해야합니까?May 13, 2025 am 12:07 AM

USEAFORLOOPHENTERATINGOVERASERASERASPECIFICNUMBEROFTIMES; USEAWHILLOOPWHENTINUTIMONDITINISMET.FORLOOPSAREIDEALFORKNOWNSEDINGENCENCENS, WHILEWHILELOOPSSUITSITUATIONS WITHERMINGEDERITERATIONS.

파이썬 루프 : 가장 일반적인 오류파이썬 루프 : 가장 일반적인 오류May 13, 2025 am 12:07 AM

Pythonloopscanleadtoerrors likeinfiniteloops, modifyinglistsdizeration, off-by-by-byerrors, zero-indexingissues, andnestedloopineficiencies.toavoidthese : 1) aing'i

파이썬의 루프 및 루프의 경우 : 각각의 장점은 무엇입니까?파이썬의 루프 및 루프의 경우 : 각각의 장점은 무엇입니까?May 13, 2025 am 12:01 AM

ForloopSareadvantageForkNowniTerations 및 Sequence, OffingSimplicityAndInamicConditionSandunkNowniTitionS 및 ControlOver Terminations를 제공합니다

파이썬 : 편집과 해석에 대한 깊은 다이빙파이썬 : 편집과 해석에 대한 깊은 다이빙May 12, 2025 am 12:14 AM

Pythonusesahybridmodelofilationandlostretation : 1) ThePyThoninterPretreCeterCompileSsourcodeIntOplatform-IndependentBecode.

Python은 해석 된 또는 편집 된 언어입니까? 왜 중요한가?Python은 해석 된 또는 편집 된 언어입니까? 왜 중요한가?May 12, 2025 am 12:09 AM

Pythonisbothingretedandcompiled.1) 1) it 'scompiledtobytecodeforportabilityacrossplatforms.2) thebytecodeisthentenningreted, withfordiNamictyTeNgreted, WhithItmayBowerShiledlanguges.

루프 대 파이썬의 루프 : 주요 차이점 설명루프 대 파이썬의 루프 : 주요 차이점 설명May 12, 2025 am 12:08 AM

forloopsareideal when

루프를위한 것 및 기간 : 실용 가이드루프를위한 것 및 기간 : 실용 가이드May 12, 2025 am 12:07 AM

forloopsareusedwhendumberofitessiskNowninadvance, whilewhiloopsareusedwhentheationsdepernationsorarrays.2) whiloopsureatableforscenarioScontiLaspecOndCond

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

ZendStudio 13.5.1 맥

ZendStudio 13.5.1 맥

강력한 PHP 통합 개발 환경

SecList

SecList

SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

Dreamweaver Mac版

Dreamweaver Mac版

시각적 웹 개발 도구

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.