커피 한잔 사주세요😄
*메모:
- 내 게시물에는 pow()에 대한 설명이 나와 있습니다.
- 내 게시물에서는 float_power()에 대해 설명합니다.
- 내 게시물에서는 abs() 및 sqrt()에 대해 설명합니다.
- 내 게시물에서는 gcd() 및 lcm()에 대해 설명합니다.
- 내 게시물에서는 Trace(), reciprocal() 및 rsqrt()에 대해 설명합니다.
square()는 0개 이상의 요소를 제곱한 0D 이상의 D 텐서를 가져올 수 있으며, 아래와 같이 0개 이상의 요소로 구성된 0D 이상의 D 텐서를 가져올 수 있습니다.
*메모:
- square()는 토치나 텐서와 함께 사용할 수 있습니다.
- 토치 또는 텐서(필수 유형: int, float, complex 또는 bool의 텐서)를 사용하는 첫 번째 인수(입력).
- 토치에 out 인수가 있습니다(Optional-Default:None-Type:tensor):
*메모:
- out=을 사용해야 합니다.
- 내 게시물은 논쟁을 설명합니다.
import torch my_tensor = torch.tensor(-3) torch.square(input=my_tensor) my_tensor.square() # tensor(9) my_tensor = torch.tensor([-3, 1, -2, 3, 5, -5, 0, -4]) torch.square(input=my_tensor) # tensor([9, 1, 4, 9, 25, 25, 0, 16]) my_tensor = torch.tensor([[-3, 1, -2, 3], [5, -5, 0, -4]]) torch.square(input=my_tensor) # tensor([[9, 1, 4, 9], # [25, 25, 0, 16]]) my_tensor = torch.tensor([[[-3, 1], [-2, 3]], [[5, -5], [0, -4]]]) torch.square(input=my_tensor) # tensor([[[9, 1], [4, 9]], # [[25, 25], [0, 16]]]) my_tensor = torch.tensor([[[-3., 1.], [-2., 3.]], [[5., -5.], [0., -4.]]]) torch.square(input=my_tensor) # tensor([[[9., 1.], [4., 9.]], # [[25., 25.], [0., 16.]]]) my_tensor = torch.tensor([[[-3.+0.j, 1.+0.j], [-2.+0.j, 3.+0.j]], [[5.+0.j, -5.+0.j], [0.+0.j, -4.+0.j]]]) torch.square(input=my_tensor) # tensor([[[9.-0.j, 1.+0.j], [4.-0.j, 9.+0.j]], # [[25.+0.j, 25.-0.j], [0.+0.j, 16.-0.j]]]) my_tensor = torch.tensor([[[True, False], [True, False]], [[False, True], [False, True]]]) torch.square(input=my_tensor) # tensor([[[1, 0], [1, 0]], # [[0, 1], [0, 1]]])
위 내용은 PyTorch의 사각형의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?

Fiddlerevery Where를 사용할 때 Man-in-the-Middle Reading에 Fiddlereverywhere를 사용할 때 감지되는 방법 ...

Python 3.6에 피클 파일로드 3.6 환경 보고서 오류 : modulenotfounderror : nomodulename ...


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

Dreamweaver Mac版
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

WebStorm Mac 버전
유용한 JavaScript 개발 도구

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.
