PyTorch의 사각형

Barbara Streisand
Barbara Streisand원래의
2025-01-03 03:58:38420검색

square in PyTorch

커피 한잔 사주세요😄

*메모:

  • 내 게시물에는 pow()에 대한 설명이 나와 있습니다.
  • 내 게시물에서는 float_power()에 대해 설명합니다.
  • 내 게시물에서는 abs() 및 sqrt()에 대해 설명합니다.
  • 내 게시물에서는 gcd() 및 lcm()에 대해 설명합니다.
  • 내 게시물에서는 Trace(), reciprocal() 및 rsqrt()에 대해 설명합니다.

square()는 0개 이상의 요소를 제곱한 0D 이상의 D 텐서를 가져올 수 있으며, 아래와 같이 0개 이상의 요소로 구성된 0D 이상의 D 텐서를 가져올 수 있습니다.

*메모:

  • square()는 토치나 텐서와 함께 사용할 수 있습니다.
  • 토치 또는 텐서(필수 유형: int, float, complex 또는 bool의 텐서)를 사용하는 첫 번째 인수(입력).
  • 토치에 out 인수가 있습니다(Optional-Default:None-Type:tensor): *메모:
    • out=을 사용해야 합니다.
    • 내 게시물은 논쟁을 설명합니다.
import torch

my_tensor = torch.tensor(-3)

torch.square(input=my_tensor)
my_tensor.square()
# tensor(9)

my_tensor = torch.tensor([-3, 1, -2, 3, 5, -5, 0, -4])

torch.square(input=my_tensor)
# tensor([9, 1, 4, 9, 25, 25, 0, 16])

my_tensor = torch.tensor([[-3, 1, -2, 3],
                          [5, -5, 0, -4]])
torch.square(input=my_tensor)
# tensor([[9, 1, 4, 9],
#         [25, 25, 0, 16]])

my_tensor = torch.tensor([[[-3, 1], [-2, 3]],
                          [[5, -5], [0, -4]]])
torch.square(input=my_tensor)
# tensor([[[9, 1], [4, 9]],
#         [[25, 25], [0, 16]]])

my_tensor = torch.tensor([[[-3., 1.], [-2., 3.]],
                          [[5., -5.], [0., -4.]]])
torch.square(input=my_tensor)
# tensor([[[9., 1.], [4., 9.]],
#         [[25., 25.], [0., 16.]]])

my_tensor = torch.tensor([[[-3.+0.j, 1.+0.j], [-2.+0.j, 3.+0.j]],
                          [[5.+0.j, -5.+0.j], [0.+0.j, -4.+0.j]]])
torch.square(input=my_tensor)
# tensor([[[9.-0.j, 1.+0.j], [4.-0.j, 9.+0.j]],
#         [[25.+0.j, 25.-0.j], [0.+0.j, 16.-0.j]]])

my_tensor = torch.tensor([[[True, False], [True, False]],
                          [[False, True], [False, True]]])
torch.square(input=my_tensor)
# tensor([[[1, 0], [1, 0]],
#         [[0, 1], [0, 1]]])

위 내용은 PyTorch의 사각형의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명:
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.