커피 한잔 사주세요😄
*메모:
mul()은 0개 이상의 요소나 스칼라로 구성된 0D 이상의 D 텐서 또는 0개 이상의 요소와 스칼라로 구성된 0D 이상의 D 텐서 중 두 개와 곱셈을 수행할 수 있습니다. 아래와 같이 0개 이상의 요소로 구성된 0D 이상의 D 텐서를 가져옵니다.
*메모:
import torch tensor1 = torch.tensor([9, 7, 6]) tensor2 = torch.tensor([[4, -4, 3], [-2, 5, -5]]) torch.mul(input=tensor1, other=tensor2) tensor1.mul(other=tensor2) # tensor([[36, -28, 18], [-18, 35, -30]]) torch.mul(input=9, other=tensor2) # tensor([[36, -36, 27], [-18, 45, -45]]) torch.mul(input=tensor1, other=4) # tensor([36, 28, 24]) torch.mul(input=9, other=4) # tensor(36) tensor1 = torch.tensor([9., 7., 6.]) tensor2 = torch.tensor([[4., -4., 3.], [-2., 5., -5.]]) torch.mul(input=tensor1, other=tensor2) # tensor([[36., -28., 18.], [-18., 35., -30.]]) torch.mul(input=9., other=tensor2) # tensor([[36., -36., 27.], [-18., 45., -45.]]) torch.mul(input=tensor1, other=4.) # tensor([36., 28., 24.]) torch.mul(input=9., other=4.) # tensor(36.) tensor1 = torch.tensor([9.+0.j, 7.+0.j, 6.+0.j]) tensor2 = torch.tensor([[4.+0.j, -4.+0.j, 3.+0.j], [-2.+0.j, 5.+0.j, -5.+0.j]]) torch.mul(input=tensor1, other=tensor2) # tensor([[36.+0.j, -28.+0.j, 18.+0.j], # [-18.+0.j, 35.+0.j, -30.+0.j]]) torch.mul(input=9.+0.j, other=tensor2) # tensor([[36.+0.j, -36.+0.j, 27.+0.j], # [-18.+0.j, 45.+0.j, -45.+0.j]]) torch.mul(input=tensor1, other=4.+0.j) # tensor([36.+0.j, 28.+0.j, 24.+0.j]) torch.mul(input=9.+0.j, other=4.+0.j) # tensor(36.+0.j) tensor1 = torch.tensor([True, False, True]) tensor2 = torch.tensor([[False, True, False], [True, False, True]]) torch.mul(input=tensor1, other=tensor2) # tensor([[False, False, False], # [True, False, True]]) torch.mul(input=True, other=tensor2) # tensor([[False, True, False], [True, False, True]]) torch.mul(input=tensor1, other=False) # tensor([False, False, False]) torch.mul(input=True, other=False) # tensor(False)
위 내용은 PyTorch의 멀티의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!