커피 한잔 사주세요😄
*메모:
- 내 게시물에는 arange()에 대한 설명이 나와 있습니다.
- 내 게시물에서는 logspace()에 대해 설명합니다.
linspace()는 아래와 같이 시작과 끝(start
*메모:
- linspace()는 토치와 함께 사용할 수 있지만 텐서는 사용할 수 없습니다.
- torch의 첫 번째 인수는 start(필수 유형:int, float, complex 또는 bool)입니다. *int, float, complex 또는 bool의 0D 텐서도 작동합니다.
- torch의 두 번째 인수는 end(필수 유형:int, float, complex 또는 bool)입니다. *int, float, complex 또는 bool의 0D 텐서도 작동합니다.
- torch의 세 번째 인수는 steps(Required-Type:int)입니다.
*메모:
- 0보다 크거나 같아야 합니다.
- int의 0D 텐서도 작동합니다.
- 토치에는 dtype 인수가 있습니다(Optional-Default:None-Type:dtype):
*메모:
- None인 경우 시작, 끝 또는 단계에서 유추되고 부동 소수점 숫자의 경우 get_default_dtype()이 사용됩니다. *내 게시물에서는 get_default_dtype() 및 set_default_dtype()에 대해 설명합니다.
- 정수형의 시작과 끝을 설정하는 것만으로는 정수형의 1차원 텐서를 생성할 수 없으므로 dtype을 포함한 정수형을 설정해야 합니다.
- dtype=을 사용해야 합니다.
- 내 게시물에서는 dtype 인수에 대해 설명합니다.
- torch(Optional-Default:None-Type:str, int 또는 device())에 장치 인수가 있습니다.
*메모:
- None인 경우 get_default_device()가 사용됩니다. *내 게시물에서는 get_default_device() 및 set_default_device()에 대해 설명합니다.
- device=를 사용해야 합니다.
- 내 게시물에 장치 인수에 대한 설명이 나와 있습니다.
- 토치(Optional-Default:False-Type:bool)에는 require_grad 인수가 있습니다.
*메모:
- require_grad=를 사용해야 합니다.
- 내 게시물에서는 require_grad 인수에 대해 설명합니다.
- 토치에 out 인수가 있습니다(Optional-Default:None-Type:tensor):
*메모:
- out=을 사용해야 합니다.
- 내 게시물은 논쟁을 설명합니다.
import torch torch.linspace(start=10, end=20, steps=0) torch.linspace(start=20, end=10, steps=0) # tensor([]) torch.linspace(start=10., end=20., steps=1) tensor([10.]) torch.linspace(start=20, end=10, steps=1) # tensor([20.]) torch.linspace(start=10., end=20., steps=2) # tensor([10., 20.]) torch.linspace(start=20, end=10, steps=2) # tensor([20., 10.]) torch.linspace(start=10., end=20., steps=3) # tensor([10., 15., 20.]) torch.linspace(start=20, end=10, steps=3) # tensor([20., 15., 10.]) torch.linspace(start=10., end=20., steps=4) # tensor([10.0000, 13.3333, 16.6667, 20.0000]) torch.linspace(start=20., end=10., steps=4) # tensor([20.0000, 16.6667, 13.3333, 10.0000]) torch.linspace(start=10, end=20, steps=4, dtype=torch.int64) torch.linspace(start=torch.tensor(10), end=torch.tensor(20), steps=torch.tensor(4), dtype=torch.int64) # tensor([10.0000, 13.3333, 16.6667, 20.0000]) torch.linspace(start=10.+6.j, end=20.+3.j, steps=4) torch.linspace(start=torch.tensor(10.+6.j), end=torch.tensor(20.+3.j), steps=torch.tensor(4)) # tensor([10.0000+6.j, 13.3333+5.j, 16.6667+4.j, 20.0000+3.j]) torch.linspace(start=False, end=True, steps=4) torch.linspace(start=torch.tensor(True), end=torch.tensor(False), steps=torch.tensor(4)) # tensor([0.0000, 0.3333, 0.6667, 1.0000]) torch.linspace(start=10, end=20, steps=4, dtype=torch.int64) torch.linspace(start=torch.tensor(10), end=torch.tensor(20), steps=torch.tensor(4), dtype=torch.int64) # tensor([10.0000, 13.3333, 16.6667, 20.0000])
위 내용은 PyTorch의 린스페이스의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

PythonuseSahybrideactroach, combingingcompytobytecodeandingretation.1) codeiscompiledToplatform-IndependentBecode.2) bytecodeistredbythepythonvirtonmachine, enterancingefficiency andportability.

"for"and "while"loopsare : 1) "에 대한"loopsareIdealforitertatingOverSorkNowniterations, whide2) "weekepindiTeRations.Un

Python에서는 다양한 방법을 통해 목록을 연결하고 중복 요소를 관리 할 수 있습니다. 1) 연산자를 사용하거나 ()을 사용하여 모든 중복 요소를 유지합니다. 2) 세트로 변환 한 다음 모든 중복 요소를 제거하기 위해 목록으로 돌아가지 만 원래 순서는 손실됩니다. 3) 루프 또는 목록 이해를 사용하여 세트를 결합하여 중복 요소를 제거하고 원래 순서를 유지하십시오.

fastestestestedforListCancatenationInpythondSpendsonListsize : 1) Forsmalllist, OperatoriseFficient.2) ForlargerLists, list.extend () OrlistComprehensionIsfaster, withextend () morememory-efficientBymodingListsin-splace.

toInsertElmentsIntoapyThonList, useAppend () toaddtotheend, insert () foraspecificposition, andextend () andextend () formultipleElements.1) useappend () foraddingsingleitemstotheend.2) useinsert () toaddatespecificindex, 그러나)

pythonlistsareimplementedesdynamicarrays, notlinkedlists.1) thearestoredIntIguousUousUousUousUousUousUousUousUousUousInSeripendExeDaccess, LeadingSpyTHOCESS, ImpactingEperformance

PythonoffersfourmainmethodstoremoveElementsfromalist : 1) 제거 (값) 제거 (값) removesthefirstoccurrencefavalue, 2) pop (index) 제거 elementatAspecifiedIndex, 3) delstatemeveselementsByindexorSlice, 4) RemovesAllestemsfromTheChmetho

Toresolvea "permissionDenied"오류가 발생할 때 오류가 발생합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음