찾다

squeeze in PyTorch

커피 한잔 사주세요😄

*내 게시물에서는 unsqueeze()에 대해 설명하고 있습니다.

squeeze()는 아래와 같이 0개 이상의 요소로 구성된 0D 이상의 D 텐서에서 크기가 1인 경우 0개 이상의 차원이 제거된 0개 이상의 요소로 구성된 0D 이상의 D 텐서를 가져올 수 있습니다.

*메모:

  • squeeze()는 토치나 텐서와 함께 사용할 수 있습니다.
  • 토치 또는 텐서(필수 유형: int, float, complex 또는 bool의 텐서)를 사용하는 첫 번째 인수(입력).
  • torch의 두 번째 인수 또는 텐서의 첫 번째 이상의 인수는 희미합니다(Optional-Type:int, int의 튜플 또는 int 목록). *메모:
    • 각 번호는 고유해야 합니다.
    • 크기가 1인 0개 이상의 특정 차원을 제거할 수 있습니다.
    • 크기가 1이 아닌 경우에는 설정하더라도 0개 이상의 차원이 제거되지 않습니다.
import torch

my_tensor = torch.tensor([[[[0], [1]],
                           [[2], [3]],
                           [[4], [5]]]])
torch.squeeze(input=my_tensor)
my_tensor.squeeze()
torch.squeeze(input=my_tensor, dim=(0, 3))
my_tensor.squeeze(dim=(0, 3))
my_tensor.squeeze(0, 3)
torch.squeeze(input=my_tensor, dim=(0, 1, 3))
my_tensor.squeeze(dim=(0, 1, 3))
my_tensor.squeeze(0, 1, 3)
etc.
torch.squeeze(input=my_tensor, dim=(0, 1, 2, 3))
my_tensor.squeeze(dim=(0, 1, 2, 3))
my_tensor.squeeze(0, 1, 2, 3)
etc.
# tensor([[0, 1],
#         [2, 3],
#         [4, 5]])

torch.squeeze(input=my_tensor, dim=0)
torch.squeeze(input=my_tensor, dim=-4)
torch.squeeze(input=my_tensor, dim=(0,))
torch.squeeze(input=my_tensor, dim=(-4,))
torch.squeeze(input=my_tensor, dim=(0, 1))
torch.squeeze(input=my_tensor, dim=(0, 2))
torch.squeeze(input=my_tensor, dim=(0, -2))
torch.squeeze(input=my_tensor, dim=(0, -3))
torch.squeeze(input=my_tensor, dim=(1, 0))
etc.
torch.squeeze(input=my_tensor, dim=(0, 1, 2))
etc.
# tensor([[[0], [1]],
#         [[2], [3]],
#         [[4], [5]]])

torch.squeeze(input=my_tensor, dim=1)
torch.squeeze(input=my_tensor, dim=2)
torch.squeeze(input=my_tensor, dim=-2)
torch.squeeze(input=my_tensor, dim=-3)
torch.squeeze(input=my_tensor, dim=())
torch.squeeze(input=my_tensor, dim=(1,))
torch.squeeze(input=my_tensor, dim=(2,))
torch.squeeze(input=my_tensor, dim=(-2,))
torch.squeeze(input=my_tensor, dim=(-3,))
torch.squeeze(input=my_tensor, dim=(1, 2))
etc.
# tensor([[[[0], [1]],
#          [[2], [3]],
#          [[4], [5]]]])

torch.squeeze(input=my_tensor, dim=3)
torch.squeeze(input=my_tensor, dim=-1)
torch.squeeze(input=my_tensor, dim=(3,))
torch.squeeze(input=my_tensor, dim=(-1,))
torch.squeeze(input=my_tensor, dim=(1, 3))
torch.squeeze(input=my_tensor, dim=(1, -1))
torch.squeeze(input=my_tensor, dim=(2, 3))
torch.squeeze(input=my_tensor, dim=(2, -1))
torch.squeeze(input=my_tensor, dim=(3, 1))
etc.
torch.squeeze(input=my_tensor, dim=(1, 2, 3))
etc.
# tensor([[[0, 1],
#          [2, 3],
#          [4, 5]]])

my_tensor = torch.tensor([[[[0.], [1.]],
                           [[2.], [3.]],
                           [[4.], [5.]]]])
torch.squeeze(input=my_tensor)
# tensor([[0., 1.],
#         [2., 3.],
#         [4., 5.]])

my_tensor = torch.tensor([[[[0.+0.j], [1.+0.j]],
                           [[2.+0.j], [3.+0.j]],
                           [[4.+0.j], [5.+0.j]]]])
torch.squeeze(input=my_tensor)
# tensor([[0.+0.j, 1.+0.j],
#         [2.+0.j, 3.+0.j],
#         [4.+0.j, 5.+0.j]])

my_tensor = torch.tensor([[[[True], [False]],
                           [[False], [True]],
                           [[True], [False]]]])
torch.squeeze(input=my_tensor)
# tensor([[True, False],
#         [False, True],
#         [True, False]])

위 내용은 PyTorch에서 짜내기의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
파이썬 : 편집과 해석에 대한 깊은 다이빙파이썬 : 편집과 해석에 대한 깊은 다이빙May 12, 2025 am 12:14 AM

Pythonusesahybridmodelofilationandlostretation : 1) ThePyThoninterPretreCeterCompileSsourcodeIntOplatform-IndependentBecode.

Python은 해석 된 또는 편집 된 언어입니까? 왜 중요한가?Python은 해석 된 또는 편집 된 언어입니까? 왜 중요한가?May 12, 2025 am 12:09 AM

Pythonisbothingretedandcompiled.1) 1) it 'scompiledtobytecodeforportabilityacrossplatforms.2) thebytecodeisthentenningreted, withfordiNamictyTeNgreted, WhithItmayBowerShiledlanguges.

루프 대 파이썬의 루프 : 주요 차이점 설명루프 대 파이썬의 루프 : 주요 차이점 설명May 12, 2025 am 12:08 AM

forloopsareideal when

루프를위한 것 및 기간 : 실용 가이드루프를위한 것 및 기간 : 실용 가이드May 12, 2025 am 12:07 AM

forloopsareusedwhendumberofitessiskNowninadvance, whilewhiloopsareusedwhentheationsdepernationsorarrays.2) whiloopsureatableforscenarioScontiLaspecOndCond

파이썬 : 진정으로 해석 되었습니까? 신화를 파악합니다파이썬 : 진정으로 해석 되었습니까? 신화를 파악합니다May 12, 2025 am 12:05 AM

pythonisnotpurelynlogreted; itusesahybrideprophorfbyodecodecompilationandruntime -INGRETATION.1) pythoncompilessourcecodeintobytecode, thepythonVirtualMachine (pvm)

동일한 요소를 가진 Python Concatenate 목록동일한 요소를 가진 Python Concatenate 목록May 11, 2025 am 12:08 AM

ToconcatenatelistsinpythonwithesameElements, 사용 : 1) OperatorTokeEpduplicates, 2) asettoremovedUplicates, or3) listComperensionForControlOverDuplicates, 각 methodHasDifferentPerferformanCeanDorderImpestications.

해석 대 컴파일 언어 : Python 's Place해석 대 컴파일 언어 : Python 's PlaceMay 11, 2025 am 12:07 AM

PythonisancerpretedLanguage, 비판적 요소를 제시하는 PytherfaceLockelimitationsIncriticalApplications.1) 해석 된 언어와 같은 thePeedBackandbackandrapidProtoTyping.2) CompilledlanguagesLikec/C transformt 해석

루프를 위해 및 while 루프 : 파이썬에서 언제 각각을 사용합니까?루프를 위해 및 while 루프 : 파이썬에서 언제 각각을 사용합니까?May 11, 2025 am 12:05 AM

useforloopswhhenmerfiterationsiskNownInAdvance 및 WhileLoopSweHeniTesslationsDepoyConditionismet whilEroopsSuitsCenarioswhereTheLoopScenarioswhereTheLoopScenarioswhereTheLoopScenarioswhereTherInatismet, 유용한 광고 인 푸트 gorit

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

SublimeText3 영어 버전

SublimeText3 영어 버전

권장 사항: Win 버전, 코드 프롬프트 지원!

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

SecList

SecList

SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

맨티스BT

맨티스BT

Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

VSCode Windows 64비트 다운로드

VSCode Windows 64비트 다운로드

Microsoft에서 출시한 강력한 무료 IDE 편집기