커피 한잔 사주세요😄
*내 게시물에서는 unsqueeze()에 대해 설명하고 있습니다.
squeeze()는 아래와 같이 0개 이상의 요소로 구성된 0D 이상의 D 텐서에서 크기가 1인 경우 0개 이상의 차원이 제거된 0개 이상의 요소로 구성된 0D 이상의 D 텐서를 가져올 수 있습니다.
*메모:
- squeeze()는 토치나 텐서와 함께 사용할 수 있습니다.
- 토치 또는 텐서(필수 유형: int, float, complex 또는 bool의 텐서)를 사용하는 첫 번째 인수(입력).
- torch의 두 번째 인수 또는 텐서의 첫 번째 이상의 인수는 희미합니다(Optional-Type:int, int의 튜플 또는 int 목록).
*메모:
- 각 번호는 고유해야 합니다.
- 크기가 1인 0개 이상의 특정 차원을 제거할 수 있습니다.
- 크기가 1이 아닌 경우에는 설정하더라도 0개 이상의 차원이 제거되지 않습니다.
import torch my_tensor = torch.tensor([[[[0], [1]], [[2], [3]], [[4], [5]]]]) torch.squeeze(input=my_tensor) my_tensor.squeeze() torch.squeeze(input=my_tensor, dim=(0, 3)) my_tensor.squeeze(dim=(0, 3)) my_tensor.squeeze(0, 3) torch.squeeze(input=my_tensor, dim=(0, 1, 3)) my_tensor.squeeze(dim=(0, 1, 3)) my_tensor.squeeze(0, 1, 3) etc. torch.squeeze(input=my_tensor, dim=(0, 1, 2, 3)) my_tensor.squeeze(dim=(0, 1, 2, 3)) my_tensor.squeeze(0, 1, 2, 3) etc. # tensor([[0, 1], # [2, 3], # [4, 5]]) torch.squeeze(input=my_tensor, dim=0) torch.squeeze(input=my_tensor, dim=-4) torch.squeeze(input=my_tensor, dim=(0,)) torch.squeeze(input=my_tensor, dim=(-4,)) torch.squeeze(input=my_tensor, dim=(0, 1)) torch.squeeze(input=my_tensor, dim=(0, 2)) torch.squeeze(input=my_tensor, dim=(0, -2)) torch.squeeze(input=my_tensor, dim=(0, -3)) torch.squeeze(input=my_tensor, dim=(1, 0)) etc. torch.squeeze(input=my_tensor, dim=(0, 1, 2)) etc. # tensor([[[0], [1]], # [[2], [3]], # [[4], [5]]]) torch.squeeze(input=my_tensor, dim=1) torch.squeeze(input=my_tensor, dim=2) torch.squeeze(input=my_tensor, dim=-2) torch.squeeze(input=my_tensor, dim=-3) torch.squeeze(input=my_tensor, dim=()) torch.squeeze(input=my_tensor, dim=(1,)) torch.squeeze(input=my_tensor, dim=(2,)) torch.squeeze(input=my_tensor, dim=(-2,)) torch.squeeze(input=my_tensor, dim=(-3,)) torch.squeeze(input=my_tensor, dim=(1, 2)) etc. # tensor([[[[0], [1]], # [[2], [3]], # [[4], [5]]]]) torch.squeeze(input=my_tensor, dim=3) torch.squeeze(input=my_tensor, dim=-1) torch.squeeze(input=my_tensor, dim=(3,)) torch.squeeze(input=my_tensor, dim=(-1,)) torch.squeeze(input=my_tensor, dim=(1, 3)) torch.squeeze(input=my_tensor, dim=(1, -1)) torch.squeeze(input=my_tensor, dim=(2, 3)) torch.squeeze(input=my_tensor, dim=(2, -1)) torch.squeeze(input=my_tensor, dim=(3, 1)) etc. torch.squeeze(input=my_tensor, dim=(1, 2, 3)) etc. # tensor([[[0, 1], # [2, 3], # [4, 5]]]) my_tensor = torch.tensor([[[[0.], [1.]], [[2.], [3.]], [[4.], [5.]]]]) torch.squeeze(input=my_tensor) # tensor([[0., 1.], # [2., 3.], # [4., 5.]]) my_tensor = torch.tensor([[[[0.+0.j], [1.+0.j]], [[2.+0.j], [3.+0.j]], [[4.+0.j], [5.+0.j]]]]) torch.squeeze(input=my_tensor) # tensor([[0.+0.j, 1.+0.j], # [2.+0.j, 3.+0.j], # [4.+0.j, 5.+0.j]]) my_tensor = torch.tensor([[[[True], [False]], [[False], [True]], [[True], [False]]]]) torch.squeeze(input=my_tensor) # tensor([[True, False], # [False, True], # [True, False]])
위 내용은 PyTorch에서 짜내기의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Pythonusesahybridmodelofilationandlostretation : 1) ThePyThoninterPretreCeterCompileSsourcodeIntOplatform-IndependentBecode.

Pythonisbothingretedandcompiled.1) 1) it 'scompiledtobytecodeforportabilityacrossplatforms.2) thebytecodeisthentenningreted, withfordiNamictyTeNgreted, WhithItmayBowerShiledlanguges.

forloopsareusedwhendumberofitessiskNowninadvance, whilewhiloopsareusedwhentheationsdepernationsorarrays.2) whiloopsureatableforscenarioScontiLaspecOndCond

pythonisnotpurelynlogreted; itusesahybrideprophorfbyodecodecompilationandruntime -INGRETATION.1) pythoncompilessourcecodeintobytecode, thepythonVirtualMachine (pvm)

ToconcatenatelistsinpythonwithesameElements, 사용 : 1) OperatorTokeEpduplicates, 2) asettoremovedUplicates, or3) listComperensionForControlOverDuplicates, 각 methodHasDifferentPerferformanCeanDorderImpestications.

PythonisancerpretedLanguage, 비판적 요소를 제시하는 PytherfaceLockelimitationsIncriticalApplications.1) 해석 된 언어와 같은 thePeedBackandbackandrapidProtoTyping.2) CompilledlanguagesLikec/C transformt 해석

useforloopswhhenmerfiterationsiskNownInAdvance 및 WhileLoopSweHeniTesslationsDepoyConditionismet whilEroopsSuitsCenarioswhereTheLoopScenarioswhereTheLoopScenarioswhereTheLoopScenarioswhereTherInatismet, 유용한 광고 인 푸트 gorit


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기