찾다
백엔드 개발파이썬 튜토리얼콜백 함수를 사용하지 않고 그룹화된 Pandas DataFrames에 순차적 카운터 열을 효율적으로 추가하는 방법은 무엇입니까?

How to Efficiently Add a Sequential Counter Column to Grouped Pandas DataFrames Without Using a Callback Function?

콜백 없이 그룹화된 DataFrame에 순차 카운터 열 추가

DataFrame 내의 그룹에 순차 카운터 열을 추가하려고 하면 콜백 함수는 가장 효율적인 접근 방식이 아닐 수 있습니다. 다음 DataFrame을 고려하세요.

df = pd.DataFrame(
    columns="index c1 c2 v1".split(),
    data=[
            [0,  "A",  "X",    3, ],
            [1,  "A",  "X",    5, ],
            [2,  "A",  "Y",    7, ],
            [3,  "A",  "Y",    1, ],
            [4,  "B",  "X",    3, ],
            [5,  "B",  "X",    1, ],
            [6,  "B",  "X",    3, ],
            [7,  "B",  "Y",    1, ],
            [8,  "C",  "X",    7, ],
            [9,  "C",  "Y",    4, ],
            [10,  "C",  "Y",    1, ],
            [11,  "C",  "Y",    6, ],]).set_index("index", drop=True)

목표는 각 그룹의 순차 번호를 포함하는 새 열 "seq"를 생성하여 다음과 같은 결과를 출력하는 것입니다.

   c1 c2  v1  seq
0   A  X   3    1
1   A  X   5    2
2   A  Y   7    1
3   A  Y   1    2
4   B  X   3    1
5   B  X   1    2
6   B  X   3    3
7   B  Y   1    1
8   C  X   7    1
9   C  Y   4    1
10  C  Y   1    2
11  C  Y   6    3

콜백 함수 방지:

콜백 함수를 사용하는 대신 cumcount() 메서드를 사용하면 동일한 결과를 더 효율적으로 얻을 수 있습니다. cumcount()는 그룹에서 각 고유 값의 발생 횟수를 계산하고 누적 횟수가 포함된 pandas 시리즈를 반환합니다.

df["seq"] = df.groupby(['c1', 'c2']).cumcount() + 1

이 접근 방식은 DataFrame을 직접 수정하고 콜백 함수의 오버헤드를 방지합니다.

시작 번호 사용자 정의:

원하는 경우 0 대신 1에서 시작하도록 시퀀스를 지정하면 결과에 1을 추가할 수 있습니다.

df["seq"] = df.groupby(['c1', 'c2']).cumcount() + 1

cumcount() 메서드를 활용하여 그룹화된 데이터 프레임에 순차 카운터 열을 추가하는 프로세스를 단순화하여 두 가지 모두를 개선합니다. 가독성과 성능이 뛰어납니다.

위 내용은 콜백 함수를 사용하지 않고 그룹화된 Pandas DataFrames에 순차적 카운터 열을 효율적으로 추가하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
Python vs. C : 주요 차이점 이해Python vs. C : 주요 차이점 이해Apr 21, 2025 am 12:18 AM

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Python vs. C : 프로젝트를 위해 어떤 언어를 선택해야합니까?Python vs. C : 프로젝트를 위해 어떤 언어를 선택해야합니까?Apr 21, 2025 am 12:17 AM

Python 또는 C를 선택하는 것은 프로젝트 요구 사항에 따라 다릅니다. 1) 빠른 개발, 데이터 처리 및 프로토 타입 설계가 필요한 경우 Python을 선택하십시오. 2) 고성능, 낮은 대기 시간 및 근접 하드웨어 제어가 필요한 경우 C를 선택하십시오.

파이썬 목표에 도달 : 매일 2 시간의 힘파이썬 목표에 도달 : 매일 2 시간의 힘Apr 20, 2025 am 12:21 AM

매일 2 시간의 파이썬 학습을 투자하면 프로그래밍 기술을 효과적으로 향상시킬 수 있습니다. 1. 새로운 지식 배우기 : 문서를 읽거나 자습서를 시청하십시오. 2. 연습 : 코드를 작성하고 완전한 연습을합니다. 3. 검토 : 배운 내용을 통합하십시오. 4. 프로젝트 실무 : 실제 프로젝트에서 배운 것을 적용하십시오. 이러한 구조화 된 학습 계획은 파이썬을 체계적으로 마스터하고 경력 목표를 달성하는 데 도움이 될 수 있습니다.

2 시간 극대화 : 효과적인 파이썬 학습 전략2 시간 극대화 : 효과적인 파이썬 학습 전략Apr 20, 2025 am 12:20 AM

2 시간 이내에 Python을 효율적으로 학습하는 방법 : 1. 기본 지식을 검토하고 Python 설치 및 기본 구문에 익숙한 지 확인하십시오. 2. 변수, 목록, 기능 등과 같은 파이썬의 핵심 개념을 이해합니다. 3. 예제를 사용하여 마스터 기본 및 고급 사용; 4. 일반적인 오류 및 디버깅 기술을 배우십시오. 5. 목록 이해력 사용 및 PEP8 스타일 안내서와 같은 성능 최적화 및 모범 사례를 적용합니다.

Python과 C : The Hight Language 중에서 선택Python과 C : The Hight Language 중에서 선택Apr 20, 2025 am 12:20 AM

Python은 초보자 및 데이터 과학에 적합하며 C는 시스템 프로그래밍 및 게임 개발에 적합합니다. 1. 파이썬은 간단하고 사용하기 쉽고 데이터 과학 및 웹 개발에 적합합니다. 2.C는 게임 개발 및 시스템 프로그래밍에 적합한 고성능 및 제어를 제공합니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

Python vs. C : 프로그래밍 언어의 비교 분석Python vs. C : 프로그래밍 언어의 비교 분석Apr 20, 2025 am 12:14 AM

Python은 데이터 과학 및 빠른 개발에 더 적합한 반면 C는 고성능 및 시스템 프로그래밍에 더 적합합니다. 1. Python Syntax는 간결하고 학습하기 쉽고 데이터 처리 및 과학 컴퓨팅에 적합합니다. 2.C는 복잡한 구문을 가지고 있지만 성능이 뛰어나고 게임 개발 및 시스템 프로그래밍에 종종 사용됩니다.

하루 2 시간 : 파이썬 학습의 잠재력하루 2 시간 : 파이썬 학습의 잠재력Apr 20, 2025 am 12:14 AM

파이썬을 배우기 위해 하루에 2 시간을 투자하는 것이 가능합니다. 1. 새로운 지식 배우기 : 목록 및 사전과 같은 1 시간 안에 새로운 개념을 배우십시오. 2. 연습 및 연습 : 1 시간을 사용하여 소규모 프로그램 작성과 같은 프로그래밍 연습을 수행하십시오. 합리적인 계획과 인내를 통해 짧은 시간에 Python의 핵심 개념을 마스터 할 수 있습니다.

Python vs. C : 학습 곡선 및 사용 편의성Python vs. C : 학습 곡선 및 사용 편의성Apr 19, 2025 am 12:20 AM

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

ZendStudio 13.5.1 맥

ZendStudio 13.5.1 맥

강력한 PHP 통합 개발 환경

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

PhpStorm 맥 버전

PhpStorm 맥 버전

최신(2018.2.1) 전문 PHP 통합 개발 도구

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구