찾다
백엔드 개발파이썬 튜토리얼Pandas를 사용하여 '대규모 데이터'를 효율적으로 관리하고 처리하려면 어떻게 해야 합니까?

How Can I Efficiently Manage and Process

Pandas의 "대형 데이터"를 위한 워크플로

메모리에 담기에는 너무 크지만 하드 드라이브에 담기에는 충분히 작은 데이터 세트를 처리할 때 효과적인 구축이 필수적입니다. "대량 데이터"를 관리하는 워크플로우입니다. 이 문서에서는 HDFStore 및 MongoDB와 같은 도구를 사용하여 데이터를 가져오고 쿼리하고 업데이트하는 모범 사례를 살펴봅니다.

Pandas를 사용한 대규모 데이터 조작을 위한 워크플로

영구 데이터베이스 구조에 플랫 파일 로드

플랫 파일을 영구 디스크 데이터베이스에 로드하려면 HDFStore를 사용하는 것이 좋습니다. 이를 통해 대규모 데이터 세트를 디스크에 저장하고 분석을 위해 필요한 부분만 Pandas 데이터 프레임으로 검색할 수 있습니다.

Pandas용 데이터를 검색하기 위해 데이터베이스 쿼리

데이터가 일단 저장되면 쿼리를 실행하여 데이터 하위 집합을 검색할 수 있습니다. MongoDB는 이 프로세스를 단순화하는 대체 옵션입니다.

Pandas에서 조각을 조작한 후 데이터베이스 업데이트

Pandas의 새 데이터로 데이터베이스를 업데이트하려면 새 열을 추가하세요. HDFStore를 사용하여 기존 데이터베이스 구조에 적용합니다. 그러나 새 열을 추가할 때 데이터 유형을 고려하는 것이 중요합니다. 이는 효율성에 영향을 미칠 수 있기 때문입니다.

실제 예시

다음 예시는 이러한 워크플로가 적용되는 일반적인 시나리오를 보여줍니다.

  1. 대형 플랫 파일 가져오기: 대규모 플랫 파일 데이터를 영구 파일로 반복적으로 가져옵니다. 온디스크 데이터베이스 구조.
  2. pandas 데이터 프레임 쿼리: 데이터베이스를 쿼리하여 데이터 하위 집합을 메모리 효율적인 Pandas 데이터 프레임으로 검색합니다.
  3. 새 열 만들기: 선택한 열에 작업을 수행하여 새로운 화합물을 만듭니다. columns.
  4. 새 열 추가: HDFStore 등을 사용하여 새로 생성된 열을 데이터베이스 구조에 추가합니다.

추가 고려 사항

대량 데이터로 작업할 때는 위에서 설명한 것과 같은 구조화된 워크플로를 정의하는 것이 중요합니다. 이를 통해 복잡성을 최소화하고 데이터 관리 효율성을 높일 수 있습니다.

또 다른 중요한 측면은 데이터의 성격과 수행 중인 작업을 이해하는 것입니다. 예를 들어 행 단위 작업을 수행하는 경우 데이터를 행 단위 형식(예: pytables 사용)으로 저장하면 효율성이 향상될 수 있습니다.

저장 효율성과 쿼리 성능 간의 최적 균형을 결정하는 것도 중요합니다. . 압축 기술을 사용하고 데이터 열을 설정하면 저장 공간을 최적화하고 행 수준 하위 설정을 신속하게 처리할 수 있습니다.

Pandas에서 대규모 데이터로 작업할 때 이러한 모범 사례를 준수하면 데이터 분석 프로세스를 간소화하고 더 나은 성능과 효율성을 달성할 수 있습니다. 신뢰성.

위 내용은 Pandas를 사용하여 '대규모 데이터'를 효율적으로 관리하고 처리하려면 어떻게 해야 합니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
Python의 병합 목록 : 올바른 메소드 선택Python의 병합 목록 : 올바른 메소드 선택May 14, 2025 am 12:11 AM

Tomergelistsinpython, youcanusethe operator, extendmethod, listcomprehension, oritertools.chain, 각각은 각각의 지위를 불러 일으킨다

Python 3에서 두 목록을 연결하는 방법은 무엇입니까?Python 3에서 두 목록을 연결하는 방법은 무엇입니까?May 14, 2025 am 12:09 AM

Python 3에서는 다양한 방법을 통해 두 개의 목록을 연결할 수 있습니다. 1) 작은 목록에 적합하지만 큰 목록에는 비효율적입니다. 2) 메모리 효율이 높지만 원래 목록을 수정하는 큰 목록에 적합한 확장 방법을 사용합니다. 3) 원래 목록을 수정하지 않고 여러 목록을 병합하는 데 적합한 * 운영자 사용; 4) 메모리 효율이 높은 대형 데이터 세트에 적합한 itertools.chain을 사용하십시오.

Python은 문자열을 연결합니다Python은 문자열을 연결합니다May 14, 2025 am 12:08 AM

join () 메소드를 사용하는 것은 Python의 목록에서 문자열을 연결하는 가장 효율적인 방법입니다. 1) join () 메소드를 사용하여 효율적이고 읽기 쉽습니다. 2)주기는 큰 목록에 비효율적으로 운영자를 사용합니다. 3) List Comprehension과 Join ()의 조합은 변환이 필요한 시나리오에 적합합니다. 4) READE () 방법은 다른 유형의 감소에 적합하지만 문자열 연결에 비효율적입니다. 완전한 문장은 끝납니다.

파이썬 실행, 그게 뭐야?파이썬 실행, 그게 뭐야?May 14, 2025 am 12:06 AM

pythonexecutionissprocessoftransformingpythoncodeintoExecutableInstructions.1) the -interreadsTheCode, ConvertingItintoByTecode, thethepythonVirtualMachine (pvm)을 실행합니다

파이썬 : 주요 기능은 무엇입니까?파이썬 : 주요 기능은 무엇입니까?May 14, 2025 am 12:02 AM

Python의 주요 특징은 다음과 같습니다. 1. 구문은 간결하고 이해하기 쉽고 초보자에게 적합합니다. 2. 개발 속도 향상, 동적 유형 시스템; 3. 여러 작업을 지원하는 풍부한 표준 라이브러리; 4. 광범위한 지원을 제공하는 강력한 지역 사회와 생태계; 5. 스크립팅 및 빠른 프로토 타이핑에 적합한 해석; 6. 다양한 프로그래밍 스타일에 적합한 다중-파라 디그 지원.

파이썬 : 컴파일러 또는 통역사?파이썬 : 컴파일러 또는 통역사?May 13, 2025 am 12:10 AM

Python은 해석 된 언어이지만 편집 프로세스도 포함됩니다. 1) 파이썬 코드는 먼저 바이트 코드로 컴파일됩니다. 2) 바이트 코드는 Python Virtual Machine에 의해 해석되고 실행됩니다. 3)이 하이브리드 메커니즘은 파이썬이 유연하고 효율적이지만 완전히 편집 된 언어만큼 빠르지는 않습니다.

루프 대 루프를위한 파이썬 : 루프시기는 언제 사용해야합니까?루프 대 루프를위한 파이썬 : 루프시기는 언제 사용해야합니까?May 13, 2025 am 12:07 AM

USEAFORLOOPHENTERATINGOVERASERASERASPECIFICNUMBEROFTIMES; USEAWHILLOOPWHENTINUTIMONDITINISMET.FORLOOPSAREIDEALFORKNOWNSEDINGENCENCENS, WHILEWHILELOOPSSUITSITUATIONS WITHERMINGEDERITERATIONS.

파이썬 루프 : 가장 일반적인 오류파이썬 루프 : 가장 일반적인 오류May 13, 2025 am 12:07 AM

Pythonloopscanleadtoerrors likeinfiniteloops, modifyinglistsdizeration, off-by-by-byerrors, zero-indexingissues, andnestedloopineficiencies.toavoidthese : 1) aing'i

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

DVWA

DVWA

DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

Atom Editor Mac 버전 다운로드

Atom Editor Mac 버전 다운로드

가장 인기 있는 오픈 소스 편집기

맨티스BT

맨티스BT

Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

ZendStudio 13.5.1 맥

ZendStudio 13.5.1 맥

강력한 PHP 통합 개발 환경