참여자 ID를 기준으로 대규모 DataFrame을 개별 DataFrame으로 분할
60개 이상의 실험에서 얻은 데이터가 포함된 대규모 DataFrame을 소유하고 있는 시나리오를 생각해 보세요. 참가자들. 목표는 이 방대한 DataFrame을 각각 개별 참가자를 나타내는 60개의 개별 DataFrame으로 나누는 것입니다. 필수 변수인 'name'은 DataFrame 내의 각 참가자를 고유하게 식별합니다.
맞춤 기능인 'splitframe'을 사용하여 이 작업을 수행하려는 시도는 성공하지 못한 것으로 입증되어 보다 효율적인 솔루션에 대한 의문이 제기되었습니다.
우수한 접근 방식: 데이터 프레임 슬라이싱
슬라이싱을 사용하는 대체 전략 DataFrame을 분리하는 기술. 방법은 다음과 같습니다.
- DataFrame의 'Names' 열을 사용하여 고유한 참가자 이름 목록('UniqueNames')을 생성합니다.
- 다음을 활용하여 개별 DataFrame을 수용할 수 있는 사전을 설정합니다. 'UniqueNames' 목록을 키로 사용합니다.
- 각 참가자 이름을 반복하고 해당 데이터를 사전.
슬라이싱을 활용하는 이 접근 방식은 각 참가자에 대한 개별 DataFrame을 생성하는 보다 간단하고 효율적인 방법을 제공합니다.
# Create a DataFrame with a 'Names' column data = pd.DataFrame({ 'Names': ['Joe', 'John', 'Jasper', 'Jez'] * 4, 'Ob1': np.random.rand(16), 'Ob2': np.random.rand(16) }) # Extract unique participant names UniqueNames = data['Names'].unique() # Initialize a dictionary to store individual DataFrames DataFrameDict = {elem: pd.DataFrame() for elem in UniqueNames} # Populate the dictionary with individual DataFrames for key in DataFrameDict.keys(): DataFrameDict[key] = data[data['Names'] == key]
개별 DataFrame에 액세스
특정 참가자의 특정 DataFrame에 액세스하려면 참가자 이름에 해당하는 사전 키를 사용하면 됩니다. 아래에 설명된 대로:
DataFrameDict['Joe']
위 내용은 참가자 ID를 기준으로 대규모 DataFrame을 개별 DataFrame으로 효율적으로 분할하려면 어떻게 해야 합니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Arraysinpython, 특히 비밀 복구를위한 ArecrucialInscientificcomputing.1) theaRearedFornumericalOperations, DataAnalysis 및 MachinELearning.2) Numpy'SimplementationIncensuressuressurations thanpythonlists.3) arraysenablequick

Pyenv, Venv 및 Anaconda를 사용하여 다양한 Python 버전을 관리 할 수 있습니다. 1) PYENV를 사용하여 여러 Python 버전을 관리합니다. Pyenv를 설치하고 글로벌 및 로컬 버전을 설정하십시오. 2) VENV를 사용하여 프로젝트 종속성을 분리하기 위해 가상 환경을 만듭니다. 3) Anaconda를 사용하여 데이터 과학 프로젝트에서 Python 버전을 관리하십시오. 4) 시스템 수준의 작업을 위해 시스템 파이썬을 유지하십시오. 이러한 도구와 전략을 통해 다양한 버전의 Python을 효과적으로 관리하여 프로젝트의 원활한 실행을 보장 할 수 있습니다.

Numpyarrayshaveseveraladvantagesstandardpythonarrays : 1) thearemuchfasterduetoc 기반 간증, 2) thearemorememory-refficient, 특히 withlargedatasets 및 3) wepferoptizedformationsformationstaticaloperations, 만들기, 만들기

어레이의 균질성이 성능에 미치는 영향은 이중입니다. 1) 균질성은 컴파일러가 메모리 액세스를 최적화하고 성능을 향상시킬 수 있습니다. 2) 그러나 유형 다양성을 제한하여 비 효율성으로 이어질 수 있습니다. 요컨대, 올바른 데이터 구조를 선택하는 것이 중요합니다.

tocraftexecutablepythonscripts, 다음과 같은 비스트 프랙티스를 따르십시오 : 1) 1) addashebangline (#!/usr/bin/envpython3) tomakethescriptexecutable.2) setpermissionswithchmod xyour_script.py.3) organtionewithlarstringanduseifname == "__"

numpyarraysarebetterfornumericaloperations 및 multi-dimensionaldata, mumemer-efficientArrays

numpyarraysarebetterforheavynumericalcomputing, whilearraymoduleisiMoresuily-sportainedprojectswithsimpledatatypes.1) numpyarraysofferversatively 및 formanceforgedatasets 및 complexoperations.2) Thearraymoduleisweighit 및 ep

ctypesallowscreatingandmanipulatingC-stylearraysinPython.1)UsectypestointerfacewithClibrariesforperformance.2)CreateC-stylearraysfornumericalcomputations.3)PassarraystoCfunctionsforefficientoperations.However,becautiousofmemorymanagement,performanceo


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경
