요즘 아주 흥미로운 요구가 있었습니다. 한 사람이 CSV를 사용하여 한 곳에서 다른 곳으로 데이터를 마이그레이션하고 있었습니다. 데이터는 독서 프로젝트를 위한 도서 등록입니다. 어느 순간 그녀는 나에게 이렇게 말했습니다. “자, 이제 나머지 작업은 로봇을 위한 것입니다. 각 책의 ISBN을 알아내야 해요.” 그 말대로 로봇이 하는 일인데 로봇이 하게 하면 어떨까요?
Sigla para International Standard Book Number.
한 작품에 여러 ISBN이 있을 수 있는데, 이는 에디션마다 고유한 ISBN이 있기 때문입니다. 이 경우 미디어가 호환된다면 모든 ISBN이 작동합니다. CSV에는 다음 내용이 등록되었습니다.
-> 전자책
-> 육체적
-> 오디오
논리를 살펴보겠습니다.
-> CSV 파일을 업로드하고 엽니다.
-> 제목이 포함된 열을 추출합니다.
-> 미디어 열을 추출합니다.
-> 각 제목에 대해 Google에서 ISBN으로 검색하세요.
-> 페이지에서 제목을 추출하세요.
-> ISBN 목록을 추출합니다.
-> 미디어 목록을 추출합니다.
-> 등록 매체를 확인하고 가장 가까운 ISBN을 검색하세요. 기준을 찾을 수 없으면 목록의 첫 번째 항목을 반환하세요.
-> 추후 확인을 위해 ISBN을 가져온 미디어를 알려주세요.
필요한 라이브러리를 살펴보겠습니다.
import requests # para fazer as requisições from bs4 import BeautifulSoup # para manipular o html recebido import pandas as pd # para manipular os arquivos CSV import time import random # as duas são para gerarmos intervalos aleatórios de acesso
이 책 목록에는 600개 이상의 항목이 있으며, Google에 의해 차단되는 것을 원하지 않기 때문에 무작위로 액세스하고 더 인간적인 공간을 확보할 것입니다. 또한 헤더를 사용하여 페이지의 브라우저 버전을 원한다고 말할 것입니다. 이렇게 하려면 브라우저에서 "네트워크"로 이동하여 "User-Agent"를 검색하세요.
Google에서 검색하려면 다음 URL 패턴을 사용합니다.
url_base = "https://www.google.com/search?q=isbn" # o que vem depois '=' é a pesquisa
URL에는 공백이 없으므로 제목의 공백은 " "로 대체됩니다. 팬더에서는 "스프레드시트"를 DataFrame이라고 하며 약어로 df를 사용하는 것이 매우 일반적입니다. 마지막으로, 여러분은 나와 같은 Windows를 사용하고 있을 수도 있습니다. 이 경우 시스템 주소 표시줄은 Unix에 상대적으로 투자됩니다. 붙여넣은 URL을 다른 형식으로 바꾸는 함수를 작성해 보겠습니다.
path = r"C:\caminho\livros.csv" def invert_url_pattern(url): return url.replace("\","/") path = invert_url_pattern(path) def search_book(path): url_base = "https://www.google.com/search?q=isbn" headers = { "User-Agent":"seu pc" } df = pd.read_csv(path, encoding='utf-8') books = df["Name"].tolist() media = df["media"].tolist() # vamos colocar as pesquisas aqui e depois inserir todas no DataFrame title_books = [] isbn_books = [] media_books = [] for index, book in enumerate(books): time.sleep(random.uniform(60, 90)) url = url_base + "+" + book.replace(" ", "+") req = requests.get(url, headers=headers) site = BeautifulSoup(req.text, "html.parser") #usamos as class para buscar o conteúdo title = site.find("span", class_="Wkr6U") isbns = site.find_all("div", class_="bVj5Zb") medias = site.find_all("div", class_="TCYkdd") #se algo falhar, retornamos uma string vazia if(title.text == None): title_books.append("") isbn_books.append("") media_books.append("") continue # No loop, o último item acessado será o mais recente, # pois percorremos a lista de cima para baixo. # Por isso, invertendo a lista de ISBNs, garantimos que # o mais novo de cada categoria seja processado por último. isbns = isbns[::-1] unified_data = {} for i in range(len(medias)): unified_data[medias[i].text] = isbns[i].text match media[index]: case "ebook": isbn_books.append(unified_data["Livro digital"]) media_books.append("Livro digital") case "fisical": isbn_books.append(unified_data["Livro capa dura"]) media_books.append("Livro capa dura") case "audio": isbn_books.append(unified_data["Audiolivro"]) media_books.append("Audiolivro") case _: isbn_books.append(unified_data[0]) media_books.append("") title_books.append(title.text) df["Titulo do Livro"] = title_books df["ISBN"] = isbn_books df["Tipo de Livro"] = media_books return df
자, 테스트할 모든 준비가 완료되었습니다! 테스트해 보실 수 있도록 제가 받은 내용의 예시를 남겨드리겠습니다.
Name | language | media |
---|---|---|
this other eden | ?? english | audio |
df = search_book(path) df.to_csv(invert_url_pattern("C:seu\caminho\para\salvar\nome_do_arquivo.csv"), encoding='utf-8', index=False)
이 정보가 귀하에게 도움이 되기를 바라며, 일상 생활에서 무언가를 자동화할 수 있기를 바랍니다!
위 내용은 Python을 사용한 웹스크래핑: CSV를 데이터베이스로 사용의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Python 또는 C를 선택하는 것은 프로젝트 요구 사항에 따라 다릅니다. 1) 빠른 개발, 데이터 처리 및 프로토 타입 설계가 필요한 경우 Python을 선택하십시오. 2) 고성능, 낮은 대기 시간 및 근접 하드웨어 제어가 필요한 경우 C를 선택하십시오.

매일 2 시간의 파이썬 학습을 투자하면 프로그래밍 기술을 효과적으로 향상시킬 수 있습니다. 1. 새로운 지식 배우기 : 문서를 읽거나 자습서를 시청하십시오. 2. 연습 : 코드를 작성하고 완전한 연습을합니다. 3. 검토 : 배운 내용을 통합하십시오. 4. 프로젝트 실무 : 실제 프로젝트에서 배운 것을 적용하십시오. 이러한 구조화 된 학습 계획은 파이썬을 체계적으로 마스터하고 경력 목표를 달성하는 데 도움이 될 수 있습니다.

2 시간 이내에 Python을 효율적으로 학습하는 방법 : 1. 기본 지식을 검토하고 Python 설치 및 기본 구문에 익숙한 지 확인하십시오. 2. 변수, 목록, 기능 등과 같은 파이썬의 핵심 개념을 이해합니다. 3. 예제를 사용하여 마스터 기본 및 고급 사용; 4. 일반적인 오류 및 디버깅 기술을 배우십시오. 5. 목록 이해력 사용 및 PEP8 스타일 안내서와 같은 성능 최적화 및 모범 사례를 적용합니다.

Python은 초보자 및 데이터 과학에 적합하며 C는 시스템 프로그래밍 및 게임 개발에 적합합니다. 1. 파이썬은 간단하고 사용하기 쉽고 데이터 과학 및 웹 개발에 적합합니다. 2.C는 게임 개발 및 시스템 프로그래밍에 적합한 고성능 및 제어를 제공합니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

Python은 데이터 과학 및 빠른 개발에 더 적합한 반면 C는 고성능 및 시스템 프로그래밍에 더 적합합니다. 1. Python Syntax는 간결하고 학습하기 쉽고 데이터 처리 및 과학 컴퓨팅에 적합합니다. 2.C는 복잡한 구문을 가지고 있지만 성능이 뛰어나고 게임 개발 및 시스템 프로그래밍에 종종 사용됩니다.

파이썬을 배우기 위해 하루에 2 시간을 투자하는 것이 가능합니다. 1. 새로운 지식 배우기 : 목록 및 사전과 같은 1 시간 안에 새로운 개념을 배우십시오. 2. 연습 및 연습 : 1 시간을 사용하여 소규모 프로그램 작성과 같은 프로그래밍 연습을 수행하십시오. 합리적인 계획과 인내를 통해 짧은 시간에 Python의 핵심 개념을 마스터 할 수 있습니다.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)
