Pandas DataFrames 녹이기
Melt란 무엇인가요?
pandas DataFrame을 녹이는 작업에는 각 열이 변수를 나타내는 넓은 형식에서 재구성하는 작업이 포함됩니다. 각 행은 관찰을 나타내고 각 열은 특성 값을 나타내는 긴 형식으로 pair.
DataFrame을 녹이는 방법
DataFrame을 녹이려면 pd.melt() 함수를 사용하고 다음 인수를 지정하세요.
- id_vars: 열 고유 식별자(일반적으로 기본 키 또는 인덱스)로 유지됩니다.
- value_vars: 녹일 열(행으로 변환됨) 지정하지 않으면 id_vars에 없는 모든 열이 녹습니다.
- var_name: 원래 열 이름이 포함될 열의 이름.
- value_name: 원본 열이 포함될 열의 이름 값입니다.
예를 들어 다음을 녹이려면 DataFrame:
import pandas as pd df = pd.DataFrame({'Name': ['Bob', 'John', 'Foo', 'Bar', 'Alex', 'Tom'], 'Math': ['A+', 'B', 'A', 'F', 'D', 'C'], 'English': ['C', 'B', 'B', 'A+', 'F', 'A']})
다음을 사용할 수 있습니다:
df_melted = pd.melt(df, id_vars=['Name'], value_vars=['Math', 'English'])
이것은 녹은 DataFrame을 출력합니다:
Name variable value 0 Bob Math A+ 1 John Math B 2 Foo Math A 3 Bar Math F 4 Alex Math D 5 Tom Math C 6 Bob English C 7 John English B 8 Foo English B 9 Bar English A+ 10 Alex English F 11 Tom English A
Melt 사용 시기
Melting은 다음 작업이 필요할 때 유용합니다.
- 광범위한 데이터 변환 플로팅이나 시각화에 적합한 형식으로 변환합니다.
- 특정 데이터 형식이 필요한 기계 학습 모델용 데이터를 준비합니다.
- 관찰 내용을 고유 식별자로 그룹화하고 녹은 데이터에 대해 집계 또는 변환을 수행합니다.
예시 시나리오
문제 1: 아래 DataFrame을 이름, 나이, 주제 및 학년 열이 포함된 용해된 형식으로 변환합니다.
df = pd.DataFrame({'Name': ['Bob', 'John', 'Foo', 'Bar', 'Alex', 'Tom'], 'Math': ['A+', 'B', 'A', 'F', 'D', 'C'], 'English': ['C', 'B', 'B', 'A+', 'F', 'A']})
df_melted = pd.melt(df, id_vars=['Name', 'Age'], var_name='Subject', value_name='Grade') print(df_melted)
출력:
Name Age Subject Grade 0 Bob 13 English C 1 John 16 English B 2 Foo 16 English B 3 Bar 15 English A+ 4 Alex 17 English F 5 Tom 12 English A 6 Bob 13 Math A+ 7 John 16 Math B 8 Foo 16 Math A 9 Bar 15 Math F 10 Alex 17 Math D 11 Tom 12 Math C
문제 2: 수학만 포함하도록 문제 1에서 녹은 DataFrame을 필터링합니다. columns.
df_melted_math = pd.melt(df, id_vars=['Name', 'Age'], value_vars=['Math'], var_name='Subject', value_name='Grade') print(df_melted_math)
출력:
Name Age Subject Grade 0 Bob 13 Math A+ 1 John 16 Math B 2 Foo 16 Math A 3 Bar 15 Math F 4 Alex 17 Math D 5 Tom 12 Math C
문제 3: 녹인 DataFrame을 등급별로 그룹화하고 각각의 고유한 이름과 주제를 계산합니다. 등급.
df_melted_grouped = df_melted.groupby(['Grade']).agg({'Name': ', '.join, 'Subject': ', '.join}).reset_index() print(df_melted_grouped)
출력:
Grade Name Subjects 0 A Foo, Tom Math, English 1 A+ Bob, Bar Math, English 2 B John, John, Foo Math, English, English 3 C Bob, Tom English, Math 4 D Alex Math 5 F Bar, Alex Math, English
문제 4: 문제 1에서 녹은 DataFrame을 원래 상태로 되돌립니다. format.
df_unmelted = df_melted.pivot_table(index=['Name', 'Age'], columns='Subject', values='Grade', aggfunc='first').reset_index() print(df_unmelted)
출력:
Name Age English Math 0 Alex 17 F D 1 Bar 15 A+ F 2 Bob 13 C A+ 3 Foo 16 B A 4 John 16 B B 5 Tom 12 A C
문제 5: 문제 1에서 녹은 DataFrame을 이름별로 그룹화하고 과목과 성적을 구분합니다. commas.
df_melted_by_name = df_melted.groupby('Name').agg({'Subject': ', '.join, 'Grade': ', '.join}).reset_index() print(df_melted_by_name)
출력:
Name Subject Grades 0 Alex Math, English D, F 1 Bar Math, English F, A+ 2 Bob Math, English A+, C 3 Foo Math, English A, B 4 John Math, English B, B 5 Tom Math, English C, A
문제 6: 전체 DataFrame을 단일 값 열로 녹이고 다른 열에는 원래 열 이름이 포함됩니다. .
df_melted_full = df.melt(ignore_index=False) print(df_melted_full)
출력:
Name Age variable value 0 Bob 13 Math A+ 1 John 16 Math B 2 Foo 16 Math A 3 Bar 15 Math F 4 Alex 17 Math D 5 Tom 12 Math C 6 Bob 13 English C 7 John 16 English B 8 Foo 16 English B 9 Bar 15 English A+ 10 Alex 17 English F 11 Tom 12 English A
위 내용은 Pandas DataFrame을 녹이는 방법과 이 기술을 언제 사용합니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

ArraysareBetterForElement-WiseOperationsDuetOfasterAcccessandoptimizedimmentations.1) ArraysHaveCecontIguousMemoryFordirectAccess, 향상

Numpy에서 전체 배열의 수학적 작업은 벡터화 된 작업을 통해 효율적으로 구현 될 수 있습니다. 1) 추가 (ARR 2)와 같은 간단한 연산자를 사용하여 배열에서 작업을 수행하십시오. 2) Numpy는 기본 C 언어 라이브러리를 사용하여 컴퓨팅 속도를 향상시킵니다. 3) 곱셈, 분할 및 지수와 같은 복잡한 작업을 수행 할 수 있습니다. 4) 배열 모양이 호환되도록 방송 작업에주의를 기울이십시오. 5) NP.Sum ()과 같은 Numpy 함수를 사용하면 성능을 크게 향상시킬 수 있습니다.

Python에는 요소를 목록에 삽입하는 두 가지 주요 방법이 있습니다. 1) 삽입 (인덱스, 값) 메소드를 사용하여 지정된 인덱스에 요소를 삽입 할 수 있지만 큰 목록의 시작 부분에서 삽입하는 것은 비효율적입니다. 2) Append (value) 메소드를 사용하여 목록 끝에 요소를 추가하여 매우 효율적입니다. 대형 목록의 경우 Append ()를 사용하거나 Deque 또는 Numpy Array를 사용하여 성능을 최적화하는 것이 좋습니다.

TomakeApythonscriptexecutableonBothunixandwindows : 1) addashebangline (#!/usr/bin/envpython3) andusechmod xtomakeitexecutableonix.2) onwindows, inristpythonisinstalledandassociatedwith.pybattfile (run.bat) torunthescrest.

"CommandNotFound"오류가 발생하면 다음 사항을 확인해야합니다. 1. 스크립트가 존재하고 경로가 올바른지 확인하십시오. 2. 파일 권한을 확인하고 CHMOD를 사용하여 필요한 경우 실행 권한을 추가하십시오. 3. 스크립트 인터프리터가 설치되었는지 확인하십시오. 4. 스크립트 시작시 셰 잔 라인이 올바른지 확인하십시오. 그렇게하면 스크립트 작업 문제를 효과적으로 해결하고 코딩 프로세스가 원활하게 보장 할 수 있습니다.

ArraysareGenerallyMorememory- 효율적 인 thanlistsortingnumericaldataduetotheirfixed-sizenatureanddirectmemoryAccess.1) ArraysStoreElementsInacontiguousBlock, retoneverHead-fompointerSormetAdata.2) 목록, 종종 implementededymamamicArraysorlinkedStruct

ToconvertapyThonlisttoAnarray, usethearraymodule : 1) importThearrayModule, 2) CreateAlist, 3) Usearray (typecode, list) toconvertit, thetypecodelike'i'forintegers

Python 목록은 다양한 유형의 데이터를 저장할 수 있습니다. 예제 목록에는 정수, 문자열, 부동 소수점 번호, 부울, 중첩 목록 및 사전이 포함되어 있습니다. 목록 유연성은 데이터 처리 및 프로토 타이핑에서 가치가 있지만 코드의 가독성과 유지 관리를 보장하기 위해주의해서 사용해야합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

WebStorm Mac 버전
유용한 JavaScript 개발 도구

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음