우아한 스레드 종료
스레드를 갑자기 종료하는 것은 일반적으로 권장되지 않으며, 특히 Python에서는 더욱 그렇습니다. 중요한 작업이 중단되면 리소스 누출이나 데이터 손상이 발생할 수 있습니다.
권장 접근 방식
선호되는 방법은 스레드가 중단되었음을 나타내는 플래그나 세마포어를 설정하는 것입니다. 종료해야합니다. 스레드는 주기적으로 이 플래그를 확인하고 플래그가 설정된 경우 정상적으로 종료해야 합니다.
예:
import threading class StoppableThread(threading.Thread): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._stop_event = threading.Event() def stop(self): self._stop_event.set() def stopped(self): return self._stop_event.is_set()
이 예에서는 stop()을 호출하여 스레드에 신호를 보냅니다. 종료하고 Join()을 사용하여 정상적으로 완료될 때까지 기다립니다.
강제 종료
예외적인 경우 강제로 스레드를 종료해야 할 수도 있습니다. 그러나 이는 최후의 수단으로 고려해야 합니다.
강제 종료 방법:
import ctypes import inspect def _async_raise(tid, exctype): if not inspect.isclass(exctype): raise TypeError("Only types can be raised (not instances)") res = ctypes.pythonapi.PyThreadState_SetAsyncExc(ctypes.c_long(tid), ctypes.py_object(exctype)) if res == 0: raise ValueError("invalid thread id") elif res != 1: ctypes.pythonapi.PyThreadState_SetAsyncExc(ctypes.c_long(tid), None) raise SystemError("PyThreadState_SetAsyncExc failed") class ThreadWithExc(threading.Thread): def _get_my_tid(self): if not self.is_alive(): # Note: self.isAlive() on older version of Python raise threading.ThreadError("the thread is not active") # do we have it cached? if hasattr(self, "_thread_id"): return self._thread_id # no, look for it in the _active dict for tid, tobj in threading._active.items(): if tobj is self: self._thread_id = tid return tid raise AssertionError("could not determine the thread's id") def raise_exc(self, exctype): _async_raise(self._get_my_tid(), exctype )
이 방법은 PyThreadState_SetAsyncExc 함수를 사용하여 특정 작업에서 예외를 발생시킵니다. 실. 그러나 이 방법은 완전히 신뢰할 수 없으며 스레드가 Python 인터프리터 외부의 시스템 호출에 있는 경우 실패할 수 있다는 점에 유의하는 것이 중요합니다.
주의:
- 이 방법은 최대한 사용하지 마세요.
- 필요한 경우 스레드별 정리 논리를 구현하여 데이터가
- 잠재적 위험과 한계를 이해하면서 이 방법을 신중하게 사용하세요.
위 내용은 Python에서 스레드를 정상적으로 종료하는 방법과 강제 종료가 필요한 경우는 언제입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

이 기사에서는 HTML을 구문 분석하기 위해 파이썬 라이브러리 인 아름다운 수프를 사용하는 방법을 설명합니다. 데이터 추출, 다양한 HTML 구조 및 오류 처리 및 대안 (SEL과 같은 Find (), find_all (), select () 및 get_text ()와 같은 일반적인 방법을 자세히 설명합니다.

Linux 터미널에서 Python 버전을 보려고 할 때 Linux 터미널에서 Python 버전을 볼 때 권한 문제에 대한 솔루션 ... Python을 입력하십시오 ...

Python의 통계 모듈은 강력한 데이터 통계 분석 기능을 제공하여 생물 통계 및 비즈니스 분석과 같은 데이터의 전반적인 특성을 빠르게 이해할 수 있도록 도와줍니다. 데이터 포인트를 하나씩 보는 대신 평균 또는 분산과 같은 통계를보고 무시할 수있는 원래 데이터에서 트렌드와 기능을 발견하고 대형 데이터 세트를보다 쉽고 효과적으로 비교하십시오. 이 튜토리얼은 평균을 계산하고 데이터 세트의 분산 정도를 측정하는 방법을 설명합니다. 달리 명시되지 않는 한,이 모듈의 모든 함수는 단순히 평균을 합산하는 대신 평균 () 함수의 계산을 지원합니다. 부동 소수점 번호도 사용할 수 있습니다. 무작위로 가져옵니다 수입 통계 Fracti에서

파이썬 객체의 직렬화 및 사막화는 사소한 프로그램의 주요 측면입니다. 무언가를 Python 파일에 저장하면 구성 파일을 읽거나 HTTP 요청에 응답하는 경우 객체 직렬화 및 사태화를 수행합니다. 어떤 의미에서, 직렬화와 사제화는 세계에서 가장 지루한 것들입니다. 이 모든 형식과 프로토콜에 대해 누가 걱정합니까? 일부 파이썬 객체를 지속하거나 스트리밍하여 나중에 완전히 검색하려고합니다. 이것은 세상을 개념적 차원에서 볼 수있는 좋은 방법입니다. 그러나 실제 수준에서 선택한 직렬화 체계, 형식 또는 프로토콜은 속도, 보안, 유지 보수 상태 및 프로그램의 기타 측면을 결정할 수 있습니다.

이 기사는 딥 러닝을 위해 텐서 플로와 Pytorch를 비교합니다. 데이터 준비, 모델 구축, 교육, 평가 및 배포와 관련된 단계에 대해 자세히 설명합니다. 프레임 워크, 특히 계산 포도와 관련하여 주요 차이점

이 튜토리얼은 간단한 나무 탐색을 넘어서 DOM 조작에 중점을 둔 아름다운 수프에 대한 이전 소개를 바탕으로합니다. HTML 구조를 수정하기위한 효율적인 검색 방법과 기술을 탐색하겠습니다. 일반적인 DOM 검색 방법 중 하나는 EX입니다

이 기사는 Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask 및 요청과 같은 인기있는 Python 라이브러리에 대해 설명하고 과학 컴퓨팅, 데이터 분석, 시각화, 기계 학습, 웹 개발 및 H에서의 사용에 대해 자세히 설명합니다.

이 기사는 Python 개발자가 CLIS (Command-Line Interfaces) 구축을 안내합니다. Typer, Click 및 Argparse와 같은 라이브러리를 사용하여 입력/출력 처리를 강조하고 CLI 유용성을 향상시키기 위해 사용자 친화적 인 디자인 패턴을 홍보하는 세부 정보.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

드림위버 CS6
시각적 웹 개발 도구

WebStorm Mac 버전
유용한 JavaScript 개발 도구
