이 기사에서는 공정한 처리에 대한 이전 게시물을 바탕으로 Celery의 작업 우선순위를 살펴봅니다. 작업 우선순위는 사용자 정의 기준에 따라 작업에 다양한 우선순위 수준을 할당하여 백그라운드 처리의 공정성과 효율성을 높이는 방법을 제공합니다.
왜 작업 수준 우선순위인가?
작업 수준 우선순위를 통해 복잡한 구현 없이 작업 실행을 세밀하게 제어할 수 있습니다. 할당된 우선순위 값을 사용하여 모든 작업을 단일 대기열에 제출함으로써 작업자는 긴급성에 따라 작업을 처리할 수 있습니다. 이는 제출 시간에 관계없이 공정한 처리를 보장합니다.
예를 들어, 한 테넌트가 100개의 작업을 제출하고 다른 테넌트가 곧 5개의 작업을 제출하는 경우 작업 수준 우선 순위에 따라 두 번째 테넌트는 100개의 작업이 모두 완료될 때까지 기다리지 않습니다.
이 접근 방식은 테넌트의 작업 수에 따라 우선순위를 동적으로 할당합니다. 각 테넌트의 첫 번째 작업은 높은 우선 순위로 시작되지만 동시 작업이 10개마다 우선 순위가 감소합니다. 이를 통해 작업 수가 적은 임차인이 불필요한 지연을 경험하지 않도록 할 수 있습니다.
작업 우선순위 구현
먼저 Celery와 Redis를 설치합니다.
pip install celery redis
Redis를 브로커로 사용하고 우선순위 기반 작업 처리를 활성화하도록 Celery를 구성합니다.
from celery import Celery app = Celery( "tasks", broker="redis://localhost:6379/0", broker_connection_retry_on_startup=True, ) app.conf.broker_transport_options = { "priority_steps": list(range(10)), "sep": ":", "queue_order_strategy": "priority", }
Redis를 사용하여 각 테넌트의 작업 수를 캐시하는 동적 우선순위를 계산하는 방법을 정의합니다.
import redis redis_client = redis.StrictRedis(host="localhost", port=6379, db=1) def calculate_priority(tenant_id): """ Calculate task priority based on the number of tasks for the tenant. """ key = f"tenant:{tenant_id}:task_count" task_count = int(redis_client.get(key) or 0) return min(10, task_count // 10)
성공적으로 완료되면 작업 수를 줄이는 사용자 정의 작업 클래스를 만듭니다.
from celery import Task class TenantAwareTask(Task): def on_success(self, retval, task_id, args, kwargs): tenant_id = kwargs.get("tenant_id") if tenant_id: key = f"tenant:{tenant_id}:task_count" redis_client.decr(key, 1) return super().on_success(retval, task_id, args, kwargs) @app.task(name="tasks.send_email", base=TenantAwareTask) def send_email(tenant_id, task_data): """ Simulate sending an email. """ sleep(1) key = f"tenant:{tenant_id}:task_count" task_count = int(redis_client.get(key) or 0) logger.info("Tenant %s tasks: %s", tenant_id, task_count)
다른 테넌트에 대한 작업을 트리거하여 테넌트_id가 작업의 키워드 인수에 포함되도록 합니다.
if __name__ == "__main__": tenant_id = 1 for _ in range(100): priority = calculate_priority(tenant_id) key = f"tenant:{tenant_id}:task_count" redis_client.incr(key, 1) send_email.apply_async( kwargs={"tenant_id": tenant_id, "task_data": {}}, priority=priority ) tenant_id = 2 for _ in range(10): priority = calculate_priority(tenant_id) key = f"tenant:{tenant_id}:task_count" redis_client.incr(key, 1) send_email.apply_async( kwargs={"tenant_id": tenant_id, "task_data": {}}, priority=priority )
여기에서 전체 코드를 볼 수 있습니다.
Celery 작업자를 시작하고 작업을 트리거합니다.
# Run the worker celery -A tasks worker --loglevel=info # Trigger the tasks python tasks.py
이 설정은 Redis와 결합된 Celery의 우선 순위 대기열이 테넌트 활동에 따라 우선 순위를 동적으로 조정하여 공정한 작업 처리를 보장하는 방법을 보여줍니다. 작업자의 단순화된 출력을 살펴보겠습니다.
결론
Celery 및 Redis의 작업 수준 우선순위는 다중 테넌트 시스템에서 공정한 처리를 보장하기 위한 강력한 솔루션을 제공합니다. 우선순위를 동적으로 할당하고 단일 대기열을 활용함으로써 비즈니스 요구 사항을 충족하면서 단순성을 유지할 수 있습니다.
작업 수준 우선순위를 구현하는 방법은 여러 가지가 있습니다. 예를 들어 RabbitMQ를 사용하는 것은 핵심에서 우선순위를 지원하므로 더 효율적이지만 작업 계산에도 Redis를 사용하므로 전체 아키텍처가 단순화됩니다.
이 내용이 도움이 되기를 바라며 다음 내용을 살펴보세요!
위 내용은 셀러리의 공정한 처리 보장 - 2부의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

다음 단계를 통해 Numpy를 사용하여 다차원 배열을 만들 수 있습니다. 1) Numpy.array () 함수를 사용하여 NP.Array ([[1,2,3], [4,5,6]]과 같은 배열을 생성하여 2D 배열을 만듭니다. 2) np.zeros (), np.ones (), np.random.random () 및 기타 함수를 사용하여 특정 값으로 채워진 배열을 만듭니다. 3) 서브 어레이의 길이가 일관되고 오류를 피하기 위해 배열의 모양과 크기 특성을 이해하십시오. 4) NP.Reshape () 함수를 사용하여 배열의 모양을 변경하십시오. 5) 코드가 명확하고 효율적인지 확인하기 위해 메모리 사용에주의를 기울이십시오.

BroadcastingInnumpyIsamethodtoperformoperationsonArraysoffferentShapesByAutomicallyAligningThem.itsimplifiesCode, enourseadability, andboostsperformance.here'showitworks : 1) smalraysarepaddedwithonestomatchdimenseare

forpythondatastorage, chooselistsforflexibilitywithmixeddatatypes, array.arrayformemory-effic homogeneousnumericaldata, andnumpyarraysforadvancednumericalcomputing.listsareversatilebutlessefficipforlargenumericaldatasets.arrayoffersamiddlegro

pythonlistsarebetterthanarraysformanagingDiversEdatatypes.1) 1) listscanholdementsofdifferentTypes, 2) thearedynamic, weantEasyAdditionSandremovals, 3) wefferintufiveOperationsLikEslicing, but 4) butiendess-effectorlowerggatesets.

toaccesselementsInapyThonArray : my_array [2] AccessHetHirdElement, returning3.pythonuseszero 기반 인덱싱 .1) 사용 positiveAndnegativeIndexing : my_list [0] forthefirstelement, my_list [-1] forstelast.2) audeeliciforarange : my_list

기사는 구문 모호성으로 인해 파이썬에서 튜플 이해의 불가능성에 대해 논의합니다. 튜플을 효율적으로 생성하기 위해 튜플 ()을 사용하는 것과 같은 대안이 제안됩니다. (159 자)

이 기사는 파이썬의 모듈과 패키지, 차이점 및 사용법을 설명합니다. 모듈은 단일 파일이고 패키지는 __init__.py 파일이있는 디렉토리이며 관련 모듈을 계층 적으로 구성합니다.

기사는 Python의 Docstrings, 사용법 및 혜택에 대해 설명합니다. 주요 이슈 : 코드 문서 및 접근성에 대한 문서의 중요성.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

WebStorm Mac 버전
유용한 JavaScript 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Dreamweaver Mac版
시각적 웹 개발 도구

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기
