이 기사에서는 최신 변환기 기반 모델을 결합한 간단하면서도 효과적인 질문 답변 시스템의 구현을 살펴봅니다. 시스템은 답변 생성을 위해 T5(Text-to-Text Transfer Transformer)를 사용하고 의미 유사성 일치를 위해 Sentence Transformer를 사용합니다.
이전 기사에서는 무료 기본 LLM 모델을 사용하여 웹 인터페이스로 간단한 번역 API를 만드는 방법을 설명했습니다. 이번에는 무료 변환기 기반 LLM 모델과 지식 기반을 사용하여 검색 증강 생성(RAG) 시스템을 구축하는 방법을 살펴보겠습니다.
RAG(Retrieval-Augmented Generation)는 두 가지 핵심 구성 요소를 결합한 기술입니다.
검색: 먼저 지식 기반(예: 문서, 데이터베이스 등)을 검색하여 특정 쿼리에 대한 관련 정보를 찾습니다. 여기에는 일반적으로 다음이 포함됩니다.
- 텍스트를 임베딩(의미를 나타내는 숫자 벡터)으로 변환
- 유사성 척도(예: 코사인 유사성)를 사용하여 유사한 콘텐츠 찾기
- 가장 관련성이 높은 정보 선택
세대: 그런 다음 언어 모델(예: 코드의 T5)을 사용하여 다음을 통해 응답을 생성합니다.
검색된 정보를 원래 질문과 결합
이 맥락을 기반으로 자연어 응답 생성
코드:
- SentenceTransformer는 임베딩을 생성하여 검색 부분을 처리합니다
- T5 모델은 답변을 생성하여 세대 부분을 담당합니다
RAG의 장점:
- 특정 지식을 바탕으로 답변하므로 더욱 정확한 답변
- 순수 LLM 응답에 비해 환각 감소
- 최신 정보 또는 도메인별 정보에 액세스하는 기능
- 순수 세대보다 더 통제 가능하고 투명합니다
시스템 아키텍처 개요
구현은 두 가지 주요 구성요소를 조정하는 SimpleQASystem 클래스로 구성됩니다.
- 문장변환기를 이용한 의미검색 시스템
- T5를 이용한 답변 생성 시스템
여기에서 최신 버전의 소스 코드를 다운로드할 수 있습니다: https://github.com/alexander-uspenskiy/rag_project
시스템 다이어그램
RAG 프로젝트 설정 가이드
이 가이드는 macOS와 Windows 모두에서 RAG(Retrieval-Augmented Generation) 프로젝트를 설정하는 데 도움이 됩니다.
전제 조건
macOS의 경우:
Homebrew 설치(아직 설치하지 않은 경우):
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
Homebrew를 사용하여 Python 3.8 설치
양조 설치 python@3.10
Windows의 경우:
python.org에서 Python 3.8을 다운로드하여 설치하세요
설치 중에 "PATH에 Python 추가"를 확인하세요
프로젝트 설정
1단계: 프로젝트 디렉터리 생성
macOS:
mkdir RAG_project
cd RAG_프로젝트
창:
mkdir RAG_project
cd RAG_프로젝트
2단계: 가상 환경 설정
macOS:
python3 -m venv venv
소스 venv/bin/활성화
Windows:
python -m venv venv
venvScripts활성화
**핵심 구성요소
- 초기화**
def __init__(self): self.model_name = 't5-small' self.tokenizer = T5Tokenizer.from_pretrained(self.model_name) self.model = T5ForConditionalGeneration.from_pretrained(self.model_name) self.encoder = SentenceTransformer('paraphrase-MiniLM-L6-v2')
시스템은 두 가지 기본 모델로 초기화됩니다.
T5-small: 답변 생성을 위한 T5 모델의 소형 버전
paraphrase-MiniLM-L6-v2: 텍스트를 의미 있는 벡터로 인코딩하기 위한 문장 변환기 모델
2. 데이터세트 준비
def prepare_dataset(self, data: List[Dict[str, str]]): self.answers = [item['answer'] for item in data] self.answer_embeddings = [] for answer in self.answers: embedding = self.encoder.encode(answer, convert_to_tensor=True) self.answer_embeddings.append(embedding)
데이터세트 준비 단계:
- 입력 데이터에서 답변을 추출합니다
- 문장 변환기를 사용하여 각 답변에 대한 임베딩을 생성합니다
- 빠른 검색을 위해 답변과 임베딩을 모두 저장합니다
시스템 작동 방식
1. 질문 처리
사용자가 질문을 제출하면 시스템은 다음 단계를 따릅니다.
임베딩 생성: 질문은 답변에 사용된 것과 동일한 문장 변환기 모델을 사용하여 벡터 표현으로 변환됩니다.
의미 검색: 시스템은 다음을 통해 가장 관련성이 높은 저장된 답변을 찾습니다.
- 질문 임베딩과 모든 답변 임베딩 간의 코사인 유사성 계산
- 유사도 점수가 가장 높은 답변 선택 컨텍스트 형성: 선택된 답변은 T5가 최종 응답을 생성하는 컨텍스트가 됩니다.
2. 답변생성
def get_answer(self, question: str) -> str: # ... semantic search logic ... input_text = f"Given the context, what is the answer to the question: {question} Context: {context}" input_ids = self.tokenizer(input_text, max_length=512, truncation=True, padding='max_length', return_tensors='pt').input_ids outputs = self.model.generate(input_ids, max_length=50, num_beams=4, early_stopping=True, no_repeat_ngram_size=2
답변 생성 과정:
- 질문과 맥락을 결합하여 T5에 대한 프롬프트로 만듭니다
- 최대 512개의 토큰 길이로 입력 텍스트를 토큰화합니다
- 다음 매개변수를 사용하여 빔 검색을 사용하여 답변을 생성합니다.
- max_length=50: 답변 길이 제한
- num_beams=4: 4개의 빔으로 빔 검색을 사용합니다
- early_stopping=True: 모든 빔이 종료 토큰에 도달하면 생성을 중지합니다
- no_repeat_ngram_size=2: 바이그램 반복 방지
3. 답변 청소
def __init__(self): self.model_name = 't5-small' self.tokenizer = T5Tokenizer.from_pretrained(self.model_name) self.model = T5ForConditionalGeneration.from_pretrained(self.model_name) self.encoder = SentenceTransformer('paraphrase-MiniLM-L6-v2')
- 중복된 연속 단어 제거(대소문자 구분)
- 답변의 첫 글자를 대문자로 합니다
- 추가 공백 제거
전체 소스 코드
여기에서 최신 버전의 소스 코드를 다운로드할 수 있습니다: https://github.com/alexander-uspenskiy/rag_project
def prepare_dataset(self, data: List[Dict[str, str]]): self.answers = [item['answer'] for item in data] self.answer_embeddings = [] for answer in self.answers: embedding = self.encoder.encode(answer, convert_to_tensor=True) self.answer_embeddings.append(embedding)
메모리 관리:
시스템은 메모리 문제를 피하기 위해 CPU를 명시적으로 사용합니다
필요한 경우 임베딩이 CPU 텐서로 변환됩니다
입력 길이는 토큰 512개로 제한됩니다
오류 처리:
- 코드 전체에 걸친 포괄적인 try-제외 블록
- 디버깅을 위한 의미 있는 오류 메시지
- 초기화되지 않은 구성 요소에 대한 유효성 검사
사용예
def get_answer(self, question: str) -> str: # ... semantic search logic ... input_text = f"Given the context, what is the answer to the question: {question} Context: {context}" input_ids = self.tokenizer(input_text, max_length=512, truncation=True, padding='max_length', return_tensors='pt').input_ids outputs = self.model.generate(input_ids, max_length=50, num_beams=4, early_stopping=True, no_repeat_ngram_size=2
터미널에서 실행
제한 사항 및 잠재적인 개선 사항
확장성:
현재 구현에서는 모든 임베딩을 메모리에 유지합니다
대규모 응용프로그램을 위한 벡터 데이터베이스로 개선될 수 있습니다
답변 품질:
제공된 답변 데이터세트의 품질에 크게 의존합니다
T5-small
의 컨텍스트 창에 의해 제한됨
답변 확인 또는 신뢰도 점수를 통해 이점을 얻을 수 있습니다
공연:
- 대규모 애플리케이션의 경우 CPU만 사용하면 속도가 느려질 수 있습니다
- 일괄 처리로 최적화 가능
- 자주 묻는 질문에 대한 캐싱 구현 가능
결론
이 구현은 의미 체계 검색과 변환기 기반 텍스트 생성의 장점을 결합하여 질문 답변 시스템을 위한 견고한 기반을 제공합니다. 보다 일관되고 안정적인 답변을 얻을 수 있는 더 나은 방법을 찾으려면 모델 매개변수(예: max_length, num_beams, early_stopping, no_repeat_ngram_size 등)를 자유롭게 사용해 보세요. 개선의 여지가 있지만 현재 구현은 복잡성과 기능 간의 적절한 균형을 제공하므로 교육 목적과 중소 규모 애플리케이션에 적합합니다.
즐거운 코딩하세요!
위 내용은 무료 LLM 모델 및 기술 자료를 사용하여 자신만의 RAG를 만드는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Python 또는 C를 선택하는 것은 프로젝트 요구 사항에 따라 다릅니다. 1) 빠른 개발, 데이터 처리 및 프로토 타입 설계가 필요한 경우 Python을 선택하십시오. 2) 고성능, 낮은 대기 시간 및 근접 하드웨어 제어가 필요한 경우 C를 선택하십시오.

매일 2 시간의 파이썬 학습을 투자하면 프로그래밍 기술을 효과적으로 향상시킬 수 있습니다. 1. 새로운 지식 배우기 : 문서를 읽거나 자습서를 시청하십시오. 2. 연습 : 코드를 작성하고 완전한 연습을합니다. 3. 검토 : 배운 내용을 통합하십시오. 4. 프로젝트 실무 : 실제 프로젝트에서 배운 것을 적용하십시오. 이러한 구조화 된 학습 계획은 파이썬을 체계적으로 마스터하고 경력 목표를 달성하는 데 도움이 될 수 있습니다.

2 시간 이내에 Python을 효율적으로 학습하는 방법 : 1. 기본 지식을 검토하고 Python 설치 및 기본 구문에 익숙한 지 확인하십시오. 2. 변수, 목록, 기능 등과 같은 파이썬의 핵심 개념을 이해합니다. 3. 예제를 사용하여 마스터 기본 및 고급 사용; 4. 일반적인 오류 및 디버깅 기술을 배우십시오. 5. 목록 이해력 사용 및 PEP8 스타일 안내서와 같은 성능 최적화 및 모범 사례를 적용합니다.

Python은 초보자 및 데이터 과학에 적합하며 C는 시스템 프로그래밍 및 게임 개발에 적합합니다. 1. 파이썬은 간단하고 사용하기 쉽고 데이터 과학 및 웹 개발에 적합합니다. 2.C는 게임 개발 및 시스템 프로그래밍에 적합한 고성능 및 제어를 제공합니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

Python은 데이터 과학 및 빠른 개발에 더 적합한 반면 C는 고성능 및 시스템 프로그래밍에 더 적합합니다. 1. Python Syntax는 간결하고 학습하기 쉽고 데이터 처리 및 과학 컴퓨팅에 적합합니다. 2.C는 복잡한 구문을 가지고 있지만 성능이 뛰어나고 게임 개발 및 시스템 프로그래밍에 종종 사용됩니다.

파이썬을 배우기 위해 하루에 2 시간을 투자하는 것이 가능합니다. 1. 새로운 지식 배우기 : 목록 및 사전과 같은 1 시간 안에 새로운 개념을 배우십시오. 2. 연습 및 연습 : 1 시간을 사용하여 소규모 프로그램 작성과 같은 프로그래밍 연습을 수행하십시오. 합리적인 계획과 인내를 통해 짧은 시간에 Python의 핵심 개념을 마스터 할 수 있습니다.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.
